精英家教网 > 高中数学 > 题目详情
2.过抛物线y2=2px(p>0)的焦点F的直线交抛物线于A,B两点,已知|AF|=3,|BF|=2,则p等于$\frac{12}{5}$.

分析 根据AF|=3,|BF|=2,利用抛物线的定义可得A,B的横坐标,利用$\frac{{{y}_{1}}^{2}}{{{y}_{2}}^{2}}$=$\frac{{x}_{1}}{{x}_{2}}$=$\frac{9}{4}$,即可求得p的值.

解答 解:设A(x1,y1),B(x2,y2),则
∵|AF|=3,|BF|=2
∴根据抛物线的定义可得x1=3-$\frac{p}{2}$,x2=2-$\frac{p}{2}$,
∵$\frac{{{y}_{1}}^{2}}{{{y}_{2}}^{2}}$=$\frac{{x}_{1}}{{x}_{2}}$=$\frac{9}{4}$,
∴4(3-$\frac{p}{2}$)=9(2-$\frac{p}{2}$)
∴p=$\frac{12}{5}$.
故答案为:$\frac{12}{5}$.

点评 本题考查抛物线的定义,考查三角形的相似,解题的关键是利用抛物线的定义确定A,B的横坐标.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.在平面直角坐标系xOy中,倾斜角为α(α≠$\frac{π}{2}$)的直线l的参数方程为$\left\{{\begin{array}{l}{x=1+tcosα}\\{y=tsinα}\end{array}}\right.$(t为参数).以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程是ρcos2θ-4sinθ=0.
(I)写出直线l的普通方程和曲线C的直角坐标方程;
(Ⅱ)已知点P(1,0).若点M的极坐标为(1,$\frac{π}{2}$),直线l经过点M且与曲线C相交于A,B两点,设线段AB的中点为Q,求|PQ|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.有5位同学排成前后两排拍照,若前排站2人,则甲不站后排两端且甲、乙左右相邻的概率为(  )
A.$\frac{3}{20}$B.$\frac{1}{5}$C.$\frac{3}{10}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=|x|-|x-1|.
(1)若关于x的不等式f(x)≥|m-1|的解集非空,求实数m的取值集合M.
(2)记(1)中数集M中的最大值为k,正实数a,b满足a2+b2=k,证明:a+b≥2ab.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在△ABC中,“A<B<C”是“cos2A>cos2B>cos2C”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设函数f(x)=|x-4|,g(x)=|2x+1|.
(1)解不等式f(x)<g(x);
(2)若2f(x)+g(x)>ax对任意的实数x恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若直角坐标平面内的两点P,Q满足条件:①P,Q都在函数y=f(x)的图象上;②P,Q关于原点对称,则称点对(P,Q)是函数y=f(x)的一对“友好点对”(点对(P,Q)与(Q,P)看作同一对“友好点对”).已知函数f(x)=$\left\{\begin{array}{l}{{(\frac{1}{2})}^{x},x>0}\\{x+1,x≤0}\end{array}\right.$,则此函数的“友好点对”有(  )
A.3对B.2对C.1对D.0对

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=-x3+ax2+b(a,b∈R).
(1)设函数g(x)=f(x)-b,若a=1,求函数g(x)在(1,g(1))处的切线方程;
(2)若函数f(x)在(0,2)上是增函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,
(1)求函数f(x)的解析式;
(2)如何由函数y=sinx的图象通过相应的平移与伸缩变换得到函数f(x)的图象,写出变换过程.

查看答案和解析>>

同步练习册答案