12£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬Çãб½ÇΪ¦Á£¨¦Á¡Ù$\frac{¦Ð}{2}$£©µÄÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=1+tcos¦Á}\\{y=tsin¦Á}\end{array}}\right.$£¨tΪ²ÎÊý£©£®ÒÔ×ø±êÔ­µãΪ¼«µã£¬ÒÔxÖáµÄÕý°ëÖáΪ¼«Öᣬ½¨Á¢¼«×ø±êϵ£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌÊǦÑcos2¦È-4sin¦È=0£®
£¨I£©Ð´³öÖ±ÏßlµÄÆÕͨ·½³ÌºÍÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©ÒÑÖªµãP£¨1£¬0£©£®ÈôµãMµÄ¼«×ø±êΪ£¨1£¬$\frac{¦Ð}{2}$£©£¬Ö±Ïßl¾­¹ýµãMÇÒÓëÇúÏßCÏཻÓÚA£¬BÁ½µã£¬ÉèÏß¶ÎABµÄÖеãΪQ£¬Çó|PQ|µÄÖµ£®

·ÖÎö £¨¢ñ£©Ö±ÏßlµÄ²ÎÊý·½³ÌÏûÈ¥²ÎÊýt£¬ÄÜÇó³öÖ±ÏßlµÄÆÕͨ·½³Ì£»ÓÉÇúÏßCµÄ¼«×ø±ê·½³ÌÄÜÇó³öÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£®
£¨¢ò£©Çó³öµãMµÄÖ±½Ç×ø±êΪ£¨0£¬1£©£¬´Ó¶øÖ±ÏßlµÄÇãб½ÇΪ$¦Á=-\frac{3¦Ð}{4}$£¬ÓÉ´ËÄÜÇó³öÖ±ÏßlµÄ²ÎÊý·½³Ì£¬´úÈëx2=4y£¬µÃ${t}^{2}-6\sqrt{2}t+2=0$£¬ÓÉ´ËÀûÓÃΤ´ï¶¨ÀíºÍÁ½µã¼ä¾àÀ빫ʽÄÜÇó³ö|PQ|£®

½â´ð ½â£º£¨¢ñ£©¡ßÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=1+tcos¦Á}\\{y=tsin¦Á}\end{array}}\right.$£¨tΪ²ÎÊý£©£®
¡àÖ±ÏßlµÄÆÕͨ·½³ÌΪy=tan¦Á•£¨x-1£©£¬
ÓÉÇúÏßCµÄ¼«×ø±ê·½³ÌÊǦÑcos2¦È-4sin¦È=0£¬µÃ¦Ñ2cos2¦È-4¦Ñsin¦È=0£¬
¡àx2-4y=0£¬
¡àÇúÏßCµÄÖ±½Ç×ø±ê·½³ÌΪx2=4y£®
£¨¢ò£©¡ßµãMµÄ¼«×ø±êΪ£¨1£¬$\frac{¦Ð}{2}$£©£¬¡àµãMµÄÖ±½Ç×ø±êΪ£¨0£¬1£©£¬
¡àtan¦Á=-1£¬Ö±ÏßlµÄÇãб½ÇΪ$¦Á=-\frac{3¦Ð}{4}$£¬
¡àÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=1-\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.£¬£¨tΪ²ÎÊý£©$£¬
´úÈëx2=4y£¬µÃ${t}^{2}-6\sqrt{2}t+2=0$£¬
ÉèA£¬BÁ½µã¶ÔÓ¦µÄ²ÎÊýΪt1£¬t2£¬
¡ßQΪÏß¶ÎABµÄÖе㣬
¡àµãQ¶ÔÓ¦µÄ²ÎÊýֵΪ$\frac{{t}_{1}+{t}_{2}}{2}=\frac{6\sqrt{2}}{2}=3\sqrt{2}$£¬
ÓÖP£¨1£¬0£©£¬Ôò|PQ|=|$\frac{{t}_{1}+{t}_{2}}{2}$|=3$\sqrt{2}$£®

µãÆÀ ±¾Ì⿼²éÇúÏßµÄÖ±½Ç×ø±ê·½³ÌµÄÇ󷨣¬¿¼²éÏÒ³¤µÄÇ󷨼°Ó¦Ó㬿¼²éÁ½µã¼ä¾àÀ빫ʽµÄÇ󷨣¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâ²ÎÊý·½³Ì¡¢Ö±½Ç×ø±ê·½³Ì¡¢¼«×ø±ê·½³Ì»¥»¯¹«Ê½µÄºÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®ÒÑÖªÍÖÔ²$\frac{x^2}{25}+\frac{y^2}{16}=1$ÄÚÒ»µãP£¨2£¬1£©£¬Ö±Ïß¹ýµãPÇÒÓëÍÖÔ²ÏཻÁ½µã£¬ÔòÒÔPΪÖеãµÄÖ±Ïß·½³ÌΪ32x-25y-89=0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖªÇúÏßC1£º$\left\{\begin{array}{l}{x=-4+cost}\\{y=3+sint}\end{array}\right.$£¬£¨tΪ²ÎÊý£©£¬ÇúÏßC2£º$\frac{{x}^{2}}{64}$+$\frac{{y}^{2}}{9}$=1£®
£¨1£©»¯C1ΪÆÕͨ·½³Ì£¬C2Ϊ²ÎÊý·½³Ì£»²¢ËµÃ÷ËüÃÇ·Ö±ð±íʾʲôÇúÏߣ¿
£¨2£©ÈôC1ÉϵĵãP¶ÔÓ¦µÄ²ÎÊýΪt=$\frac{¦Ð}{2}$£¬QΪC2Éϵ͝µã£¬ÇóPQÖеãMµ½Ö±ÏßC3£ºx-2y-7=0¾àÀëµÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÏÂÁк¯ÊýÔÚ£¨0£¬+¡Þ£©ÉÏΪ¼õº¯ÊýµÄÊÇ£¨¡¡¡¡£©
A£®y=-|x-1|B£®y=x2-2x+3C£®y=ln£¨x+1£©D£®y=2${\;}^{-\frac{x}{2}}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®Ä³ÖÐѧѡȡ20ÃûÓÅÐãͬѧ²Î¼Ó2015ÄêÓ¢ÓïÓ¦ÓÃ֪ʶ¾ºÈü£¬½«ËûÃǵijɼ¨£¨°Ù·ÖÖÆ£©£¨¾ùΪÕûÊý£©·Ö³É6×éºó£¬µÃµ½ÆµÂÊ·Ö²¼Ö±·½Í¼£¨Èçͼ£©£¬¹Û²ìͼÐÎÖеÄÐÅÏ¢£¬»Ø´ðÏÂÁÐÎÊÌ⣮
£¨1£©´ÓƵÂÊ·Ö²¼Ö±·½Í¼ÖУ¬¹À¼Æ±¾´Î¿¼ÊԵĸ߷ÖÂÊ£¨´óÓÚµÈÓÚ80·ÖÊÓΪ¸ß·Ö£©£»
£¨2£©Èô´Ó20ÃûѧÉúÖÐËæ»ú³éÈ¡2ÈË£¬³éµ½µÄѧÉú³É¼¨ÔÚ[40£¬70£©¼Ç0·Ö£¬ÔÚ[70£¬100£©¼Ç1·Ö£¬ÓÃx±íʾ³éÈ¡½áÊøºóµÄ×ܼǷ֣¬ÇóXµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÔÚÖ±½Ç×ø±êϵÖУ¬Èç¹û²»Í¬Á½µãA£¨a£¬b£©£¬B£¨-a£¬-b£©¶¼ÔÚº¯Êýy=h£¨x£©µÄͼÏóÉÏ£¬ÄÇô³Æ[A£¬B]Ϊº¯Êýh£¨x£©µÄÒ»×é¡°ÓѺõ㡱£¨[A£¬B]Óë[B£¬A]¿´×÷Ò»×飩£®ÒÑÖª¶¨ÒåÔÚ[0£¬+¡Þ£©Éϵĺ¯Êýf£¨x£©Âú×ãf£¨x+2£©=$\sqrt{2}$f£¨x£©£¬ÇÒµ±x¡Ê[0£¬2]ʱ£¬f£¨x£©=sin$\frac{¦Ð}{2}$x£®Ôòº¯Êýg£¨x£©=$\left\{\begin{array}{l}{f£¨x£©£¬0£¼x¡Ü8}\\{-\sqrt{-x}£¬-8¡Üx£¼0}\end{array}\right.$µÄ¡°ÓѺõ㡱µÄ×éÊýΪ£¨¡¡¡¡£©
A£®4B£®5C£®6D£®7

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®Èô¸´Êý$\frac{1+xi}{x+i}$¡ÊR£¬ÆäÖÐiÊÇÐéÊýµ¥Î»£¬ÔòʵÊýx=¡À1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÉèÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=t\\ y={t^2}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÈôÒÔÖ±½Ç×ø±êϵµÄÔ­µãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏß${C_2}£º¦Ñsin£¨¦È-\frac{¦Ð}{3}£©=1$
£¨1£©ÇóÇúÏßC1µÄ¼«×ø±ê·½³Ì£»
£¨2£©ÈôÇúÏßC1ÓëÇúÏßC2ÏཻÓÚA¡¢B£¬ÇóÏÒABµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®¹ýÅ×ÎïÏßy2=2px£¨p£¾0£©µÄ½¹µãFµÄÖ±Ïß½»Å×ÎïÏßÓÚA£¬BÁ½µã£¬ÒÑÖª|AF|=3£¬|BF|=2£¬ÔòpµÈÓÚ$\frac{12}{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸