精英家教网 > 高中数学 > 题目详情
3.已知曲线C1:$\left\{\begin{array}{l}{x=-4+cost}\\{y=3+sint}\end{array}\right.$,(t为参数),曲线C2:$\frac{{x}^{2}}{64}$+$\frac{{y}^{2}}{9}$=1.
(1)化C1为普通方程,C2为参数方程;并说明它们分别表示什么曲线?
(2)若C1上的点P对应的参数为t=$\frac{π}{2}$,Q为C2上的动点,求PQ中点M到直线C3:x-2y-7=0距离的最小值.

分析 (1)利用参数方程与普通方程的转化方法,可得相应方程及表示的曲线;
(2)求出M的参数坐标,M到C3的距离,利用三角函数知识即可求解.

解答 解:(1)由C1:$\left\{\begin{array}{l}{x=-4+cost}\\{y=3+sint}\end{array}\right.$,消去t得到曲线C1:(x+4)2+(y-3)2=1,
C1表示圆心是(-4,3),半径是1的圆.
曲线C2:$\frac{{x}^{2}}{64}$+$\frac{{y}^{2}}{9}$=1表示中心是坐标原点,焦点在x轴上,长半轴长是8,短半轴长是3的椭圆.
其参数方程为$\left\{\begin{array}{l}{x=8cosθ}\\{y=3sinθ}\end{array}\right.$(θ为参数)
(2)依题设,当t=$\frac{π}{2}$时,P(-4,4);
且Q(8cos θ,3sin θ),
故M(-2+4cos θ,2+$\frac{3}{2}$sin θ)
又C3为直线x-2y-7=0,
M到C3的距离d=$\frac{\sqrt{5}}{4}$|4cos θ-3sin θ-13|=$\frac{\sqrt{5}}{5}$|5cos(θ+φ)-13|,
从而当cos θ=$\frac{4}{5}$,sin θ=-$\frac{3}{5}$时,其中φ由sin φ=$\frac{3}{5}$,cos φ=$\frac{4}{5}$确定,cos(θ+φ)=1,d取得最小值$\frac{8\sqrt{5}}{5}$.

点评 本题考查参数方程、直角坐标方程的转化,考查参数方程的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.角θ的终边过点P(3t,4t)(t>0),则sinθ=$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设f,g都是由A到A的映射,其对应法则如表(从上到下);
表1  映射f对应法则
 原像 1 2 3 4
 像 3 4 1
表2  映射g的对应法则
 原像 1 2 3
 像 4 3 1
则与f[g(1)]相同的是(  )
A.g[f(3)]B.g[f(2)]C.g[f(4)]D.g[f(1)]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在对人们的休闲方式的一次调查中,共调查了124人,其中女性70人,男性54人.女性中有43人主要的休闲方式是看电视,另外27人主要的休闲方式是运动;男性中有21人主要的休闲方式是看电视,另外33人主要的休闲方式是运动.
(1)根据以上数据完成下面的2×2列联表;
(2)判断性别与休闲方式是否有关系.
休闲方式
性别
看电视运动总计
432770
213354
总计6460124
参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$(其中n=a+b+c+d)
P(K2≥k
0.500.400.250.150.100.050.0250.0100.0050.001
k00.4550.7081.3232.0722.7063.845.0246.6357.87910.83

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.某几何体的三视图如图所示,则该几何体的体积为(  )
A.4+2$\sqrt{2}$πB.8+2$\sqrt{2}$πC.4+$\frac{2\sqrt{2}}{3}$πD.8+$\frac{2\sqrt{2}}{3}$π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.按下面的程序框图进行计算时,若输入的x是正实数,输出的x=121,则输入的正实数x所有可能取值的个数为(  )
A.5B.6C.4D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在极坐标系中,圆C的极坐标方程为ρ=2$\sqrt{3}$cosθ-2sinθ,点A的极坐标为($\sqrt{3}$,2π),把极点作为平面直角坐标系的原点,极轴作为x轴的正半轴,并在两种坐标系中取相同的长度单位.
(1)求圆C在直角坐标系中的标准方程;
(2)设P为圆C上任意一点,圆心C为线段AB的中点,求|PA|+|PB|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在平面直角坐标系xOy中,倾斜角为α(α≠$\frac{π}{2}$)的直线l的参数方程为$\left\{{\begin{array}{l}{x=1+tcosα}\\{y=tsinα}\end{array}}\right.$(t为参数).以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程是ρcos2θ-4sinθ=0.
(I)写出直线l的普通方程和曲线C的直角坐标方程;
(Ⅱ)已知点P(1,0).若点M的极坐标为(1,$\frac{π}{2}$),直线l经过点M且与曲线C相交于A,B两点,设线段AB的中点为Q,求|PQ|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.有5位同学排成前后两排拍照,若前排站2人,则甲不站后排两端且甲、乙左右相邻的概率为(  )
A.$\frac{3}{20}$B.$\frac{1}{5}$C.$\frac{3}{10}$D.$\frac{3}{5}$

查看答案和解析>>

同步练习册答案