精英家教网 > 高中数学 > 题目详情
4.若复数$\frac{1+xi}{x+i}$∈R,其中i是虚数单位,则实数x=±1.

分析 利用复数的运算法则、复数为实数的充要条件即可得出.

解答 解:∵复数$\frac{1+xi}{x+i}$=$\frac{(1+xi)(x-i)}{(x+i)(x-i)}$=$\frac{2x+({x}^{2}-1)i}{{x}^{2}+1}$∈R,
∴x2-1=0,解得x=±1.
故答案为:±1.

点评 本题考查了复数的运算法则、复数为实数的充要条件,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.设f,g都是由A到A的映射,其对应法则如表(从上到下);
表1  映射f对应法则
 原像 1 2 3 4
 像 3 4 1
表2  映射g的对应法则
 原像 1 2 3
 像 4 3 1
则与f[g(1)]相同的是(  )
A.g[f(3)]B.g[f(2)]C.g[f(4)]D.g[f(1)]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在极坐标系中,圆C的极坐标方程为ρ=2$\sqrt{3}$cosθ-2sinθ,点A的极坐标为($\sqrt{3}$,2π),把极点作为平面直角坐标系的原点,极轴作为x轴的正半轴,并在两种坐标系中取相同的长度单位.
(1)求圆C在直角坐标系中的标准方程;
(2)设P为圆C上任意一点,圆心C为线段AB的中点,求|PA|+|PB|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在平面直角坐标系xOy中,倾斜角为α(α≠$\frac{π}{2}$)的直线l的参数方程为$\left\{{\begin{array}{l}{x=1+tcosα}\\{y=tsinα}\end{array}}\right.$(t为参数).以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程是ρcos2θ-4sinθ=0.
(I)写出直线l的普通方程和曲线C的直角坐标方程;
(Ⅱ)已知点P(1,0).若点M的极坐标为(1,$\frac{π}{2}$),直线l经过点M且与曲线C相交于A,B两点,设线段AB的中点为Q,求|PQ|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在正方体A1B1C1D1-ABCD中,给出以下命题:
①平面A1BD∥平面D1B1C;
②存在无数条直线,它与该正方体的六个表面所在平面所成的角都相等;
③不存在平面,与该正方体的六个表面所在平面所成的锐二面角的大小都相等;
④AD1与平面A1BD所成角的正弦值为$\frac{{\sqrt{6}}}{3}$.
其中真命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=|x-a|(a>0).
(Ⅰ)求证:f(m)+f(n)>|m-n|;
(Ⅱ)解不等式f(x)+f(-x)>2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知等边△AB′C′边长为$\sqrt{2}$,△BCD中,$BD=CD=1,BC=\sqrt{2}$(如图1所示),现将B与B′,C与C′重合,将△AB′C′向上折起,使得$AD=\sqrt{3}$(如图2所示).
(1)若BC的中点O,求证:平面BCD⊥平面AOD;
(2)在线段AC上是否存在一点E,使ED与面BCD成30°角,若存在,求出CE的长度,若不存在,请说明理由;
(3)求三棱锥A-BCD的外接球的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.有5位同学排成前后两排拍照,若前排站2人,则甲不站后排两端且甲、乙左右相邻的概率为(  )
A.$\frac{3}{20}$B.$\frac{1}{5}$C.$\frac{3}{10}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若直角坐标平面内的两点P,Q满足条件:①P,Q都在函数y=f(x)的图象上;②P,Q关于原点对称,则称点对(P,Q)是函数y=f(x)的一对“友好点对”(点对(P,Q)与(Q,P)看作同一对“友好点对”).已知函数f(x)=$\left\{\begin{array}{l}{{(\frac{1}{2})}^{x},x>0}\\{x+1,x≤0}\end{array}\right.$,则此函数的“友好点对”有(  )
A.3对B.2对C.1对D.0对

查看答案和解析>>

同步练习册答案