精英家教网 > 高中数学 > 题目详情
14.若直角坐标平面内的两点P,Q满足条件:①P,Q都在函数y=f(x)的图象上;②P,Q关于原点对称,则称点对(P,Q)是函数y=f(x)的一对“友好点对”(点对(P,Q)与(Q,P)看作同一对“友好点对”).已知函数f(x)=$\left\{\begin{array}{l}{{(\frac{1}{2})}^{x},x>0}\\{x+1,x≤0}\end{array}\right.$,则此函数的“友好点对”有(  )
A.3对B.2对C.1对D.0对

分析 根据题意:“友好点对”,可知只须作出函数y=($\frac{1}{2}$)x(x>0)的图象关于原点对称的图象,看它与函数y=x+1(x≤0)交点个数即可.

解答 解:根据题意:“友好点对”,可知,
只须作出函数y=($\frac{1}{2}$)x(x>0)的图象关于原点对称的图象,
看它与函数y=x+1(x≤0)交点个数即可.
如图,观察图象可得:它们的交点个数是:1.
即函数f(x)=$\left\{\begin{array}{l}{{(\frac{1}{2})}^{x},x>0}\\{x+1,x≤0}\end{array}\right.$的“友好点对”有1个.
故选:C.

点评 本题考查函数的“友好点对”的个数的判断,是中档题,解题时要认真审题,注意数形结合思想、函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.若复数$\frac{1+xi}{x+i}$∈R,其中i是虚数单位,则实数x=±1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设等差数列{an}的公差d<0,前n项和为Sn,已知3$\sqrt{5}$是-a2与a9的等比中项,S10=20,则d=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.过抛物线y2=2px(p>0)的焦点F的直线交抛物线于A,B两点,已知|AF|=3,|BF|=2,则p等于$\frac{12}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知复数z=$\frac{i}{1+i}$,其中i为虚数单位,则|z|=(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知A,B是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1和双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的公共顶点,其中a>b>0,P是双曲线上的动点,M是椭圆上的动点(P,M都异于A,B),且满足$\overrightarrow{PA}$+$\overrightarrow{PB}$=λ($\overrightarrow{MA}$+$\overrightarrow{MB}$)(λ∈R),设直线AP,BP,AM,BM的斜率分别为k1,k2,k3,k4,若k1+k2=$\sqrt{3}$,则k3+k4=-$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设i为虚数单位,则复数$\frac{3-4i}{i}$=-4-3i.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.数列{an}满足${a_1}=\frac{1}{3}$,对任意n∈N*,${a_{n+1}}={a_n}^2+{a_n}$,则$\sum_{n=1}^{2016}{\frac{1}{{{a_n}+1}}}$的整数部分是2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知偶函数f(x)的定义域为R,且f(x-1)是奇函数,则下面结论一定成立的是(  )
A.f(x+1)是偶函数B.f(x+1)是非奇非偶函数
C.f(x)=f(x+2)D.f(x+3)是奇函数

查看答案和解析>>

同步练习册答案