16£®ÒÑÖªµÈ±ß¡÷AB¡äC¡ä±ß³¤Îª$\sqrt{2}$£¬¡÷BCDÖУ¬$BD=CD=1£¬BC=\sqrt{2}$£¨Èçͼ1Ëùʾ£©£¬ÏÖ½«BÓëB¡ä£¬CÓëC¡äÖØºÏ£¬½«¡÷AB¡äC¡äÏòÉÏÕÛÆð£¬Ê¹µÃ$AD=\sqrt{3}$£¨Èçͼ2Ëùʾ£©£®
£¨1£©ÈôBCµÄÖеãO£¬ÇóÖ¤£ºÆ½ÃæBCD¡ÍÆ½ÃæAOD£»
£¨2£©ÔÚÏß¶ÎACÉÏÊÇ·ñ´æÔÚÒ»µãE£¬Ê¹EDÓëÃæBCD³É30¡ã½Ç£¬Èô´æÔÚ£¬Çó³öCEµÄ³¤¶È£¬Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»
£¨3£©ÇóÈýÀâ×¶A-BCDµÄÍâ½ÓÇòµÄ±íÃæ»ý£®

·ÖÎö £¨1£©ÔËÓÃÆ½Ã漸ºÎÖеÈÑüÈý½ÇÐεÄÈýÏߺÏÒ»£¬½áºÏÏßÃæ´¹Ö±µÄÅж¨¶¨ÀíºÍ̾̾´¹Ö±µÄÅж¨¶¨Àí£¬¼´¿ÉµÃÖ¤£»
£¨2£©£¨·¨1£©×÷AH¡ÍDO£¬½»DOµÄÑÓ³¤ÏßÓÚH£¬ÔËÓÃÆ½Ã漸ºÎÖÐÓйØÐÔÖÊ£¬ÒÔ¼°ÏßÃæ´¹Ö±ºÍ̾̾´¹Ö±µÄÐÔÖÊ£¬¿ÉµÃ¡ÏEDF¾ÍÊÇEDÓëÃæBCDËù³ÉµÄ½Ç£®ÔËÓÃÖ±½ÇÈý½ÇÐεÄ֪ʶ£¬¼ÆËã¿ÉµÃCE£»
£¨·¨2£©ÒÔDÎª×ø±êÔ­µã£¬ÒÔÖ±ÏßDB£¬DC·Ö±ðΪxÖᣬyÖáµÄÕý·½Ïò£¬ÒÔ¹ýDÓëÆ½ÃæBCD´¹Ö±µÄÖ±ÏßΪzÖᣬ½¨Á¢¿Õ¼äÖ±½Ç×ø±êϵ£¬ÉèCE=x£¬Çó³öEµÄ×ø±ê£¬ÔËÓ÷¨ÏòÁ¿£¬ÒÔ¼°ÏòÁ¿µÄ¼Ð½Ç¹«Ê½£¬¼ÆËã¼´¿ÉµÃµ½ËùÇó£»
£¨3£©½«Ô­Í¼²¹ÐγÉÕý·½Ì壬ÓÉAC=$\sqrt{2}$£¬¿ÉµÃÕý·½Ìå±ß³¤Îª1£¬¿ÉµÃÍâ½ÓÇòµÄÖ±¾¶¼´ÎªÕý·½ÌåµÄ¶Ô½ÇÏß³¤£¬ÓÉÇòµÄ±íÃæ»ý¹«Ê½£¬¼ÆËã¼´¿ÉµÃµ½ËùÇó£®

½â´ð ½â£º£¨1£©Ö¤Ã÷£º¡ß¡÷ABCΪµÈ±ßÈý½ÇÐΣ¬¡÷BCDΪµÈÑüÈý½ÇÐΣ¬
ÇÒOΪÖе㣬
¡àBC¡ÍAO£¬BC¡ÍDO£¬
¡ßAO¡ÉDO=O£¬¡àBC¡ÍÆ½ÃæAOD£¬
ÓÖBC?ÃæABC
¡àÆ½ÃæBCD¡ÍÆ½ÃæAOD¡­£¨3·Ö£©
£¨2£©£¨·¨1£©×÷AH¡ÍDO£¬½»DOµÄÑÓ³¤ÏßÓÚH£¬
ÔòÆ½ÃæBCD¡ÉÆ½ÃæAOD=HD£¬ÔòAH¡ÍÆ½ÃæBCD£¬
ÔÚRt¡÷BCDÖУ¬$OD=\frac{1}{2}BC=\frac{{\sqrt{2}}}{2}$£¬
ÔÚRt¡÷ACOÖУ¬$AO=\frac{{\sqrt{3}}}{2}AC=\frac{{\sqrt{6}}}{2}$£¬
ÔÚ¡÷AODÖУ¬$cos¡ÏADO=\frac{{A{D^2}+O{D^2}-A{O^2}}}{2AD•OD}=\frac{{\sqrt{6}}}{3}$£¬
¡à$sin¡ÏADO=\frac{{\sqrt{3}}}{3}$£¬ÔÚRt¡÷ADHÖÐAH=ADsin¡ÏADO=1£¬
Éè$CE=x£¨0¡Üx¡Ü\sqrt{2}£©$£¬×÷EF¡ÍCHÓÚF£¬Æ½ÃæAHC¡ÍÆ½ÃæBCD£¬
¡àEF¡ÍÆ½ÃæBCD£¬¡ÏEDF¾ÍÊÇEDÓëÃæBCDËù³ÉµÄ½Ç£®
ÓÉ$\frac{EF}{AH}=\frac{CE}{AC}$£¬¡à$EF=\frac{{\sqrt{2}}}{2}x$£¨¡ù£©£¬
ÔÚRt¡÷CDEÖУ¬$DE=\sqrt{C{E^2}+C{D^2}}=\sqrt{{x^2}+1}$£¬
ҪʹEDÓëÃæBCD³É30¡ã½Ç£¬Ö»Ðèʹ$\frac{{\frac{{\sqrt{2}}}{2}x}}{{\sqrt{{x^2}+1}}}=\frac{1}{2}$£¬
¡àx=1£¬µ±CE=1ʱ£¬EDÓëÃæBCD³É30¡ã½Ç¡­£¨9·Ö£©
£¨·¨2£©Ôڽⷨ1Öнӣ¨¡ù£©£¬ÒÔDÎª×ø±êÔ­µã£¬
ÒÔÖ±ÏßDB£¬DC·Ö±ðΪxÖᣬyÖáµÄÕý·½Ïò£¬
ÒÔ¹ýDÓëÆ½ÃæBCD´¹Ö±µÄÖ±ÏßΪzÖᣬ½¨Á¢¿Õ¼äÖ±½Ç×ø±êϵ
Ôò$D£¨0£¬0£¬0£©£¬E£¨\frac{{\sqrt{2}}}{2}x£¬1£¬\frac{{\sqrt{2}}}{2}x£©$£¬$\overrightarrow{DE}=£¨\frac{{\sqrt{2}}}{2}x£¬1£¬\frac{{\sqrt{2}}}{2}x£©$£¬
ÓÖÆ½ÃæBCDµÄÒ»¸ö·¨ÏòÁ¿Îª$\overrightarrow n=£¨0£¬0£¬1£©$£¬ÒªÊ¹EDÓëÃæBCD³É30¡ã½Ç£¬
Ö»Ðèʹ$\overrightarrow{DE}Óë\overrightarrow n$³É60¡ã£¬
Ö»Ðèʹ$\frac{{|{\overrightarrow{DE}•\overrightarrow n}|}}{{|{\overrightarrow{DE}}|•|{\overrightarrow n}|}}=cos{60¡ã}$£¬¼´$\frac{{\frac{{\sqrt{2}}}{2}x}}{{\sqrt{{x^2}+1}}}=\frac{1}{2}$£¬¡àx=1£¬
µ±CE=1ʱEDÓëÃæBCD³É30¡ã½Ç£»
£¨3£©½«Ô­Í¼²¹ÐγÉÕý·½Ì壬ÓÉAC=$\sqrt{2}$£¬¿ÉµÃÕý·½Ìå±ß³¤Îª1£¬
ÔòÍâ½ÓÇòµÄÖ±¾¶Îª$\sqrt{3}$£¬¼´°ë¾¶$r=\frac{{\sqrt{3}}}{2}$£¬
±íÃæ»ý£ºS=4¦Ðr2=3¦Ð¡­£¨12·Ö£©

µãÆÀ ±¾Ì⿼²é̾̾´¹Ö±µÄÅж¨£¬×¢ÒâÔËÓÃÏßÃæ´¹Ö±µÄÅж¨£¬¿¼²éÏßÃæ½ÇµÄÇ󷨣¬×¢ÒâÔËÓÃÏßÃæ½ÇµÄ¶¨ÒåºÍÏòÁ¿·¨£¬¿¼²éÈýÀâ×¶µÄÍâ½ÓÇòµÄ±íÃæ»ý£¬×¢ÒâÔËÓø˼Ï룬¿¼²éÔËËãºÍÍÆÀíÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÔÚÒÔϵÄÀà±ÈÍÆÀíÖнáÂÛÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®Èôa•3=b•3£¬Ôòa=bÀà±ÈÍÆ³ö Èôa•0=b•0£¬Ôòa=b
B£®Èô£¨a+b£©c=ac+bcÀà±ÈÍÆ³ö $\frac{a+b}{c}=\frac{a}{c}+\frac{b}{c}$£¨c¡Ù0£©
C£®Èô£¨a+b£©c=ac+bcÀà±ÈÍÆ³ö  £¨a•b£©c=ac•bc
D£®Èô£¨ab£©n=anbnÀà±ÈÍÆ³ö £¨a+b£©n=an+bn

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®Ä³ÖÐѧѡȡ20ÃûÓÅÐãͬѧ²Î¼Ó2015ÄêÓ¢ÓïÓ¦ÓÃ֪ʶ¾ºÈü£¬½«ËûÃǵijɼ¨£¨°Ù·ÖÖÆ£©£¨¾ùΪÕûÊý£©·Ö³É6×éºó£¬µÃµ½ÆµÂÊ·Ö²¼Ö±·½Í¼£¨Èçͼ£©£¬¹Û²ìͼÐÎÖеÄÐÅÏ¢£¬»Ø´ðÏÂÁÐÎÊÌ⣮
£¨1£©´ÓƵÂÊ·Ö²¼Ö±·½Í¼ÖУ¬¹À¼Æ±¾´Î¿¼ÊԵĸ߷ÖÂÊ£¨´óÓÚµÈÓÚ80·ÖÊÓΪ¸ß·Ö£©£»
£¨2£©Èô´Ó20ÃûѧÉúÖÐËæ»ú³éÈ¡2ÈË£¬³éµ½µÄѧÉú³É¼¨ÔÚ[40£¬70£©¼Ç0·Ö£¬ÔÚ[70£¬100£©¼Ç1·Ö£¬ÓÃx±íʾ³éÈ¡½áÊøºóµÄ×ܼǷ֣¬ÇóXµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®Èô¸´Êý$\frac{1+xi}{x+i}$¡ÊR£¬ÆäÖÐiÊÇÐéÊýµ¥Î»£¬ÔòʵÊýx=¡À1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®ÒÑ֪ͼÖСÏAOC+2¡ÏBOC=¦Ð£¬|$\overrightarrow{OA}$|=|$\overrightarrow{OC}$|£¬BC¡ÎOA£¬PΪͼÖеÄÒõÓ°ÖУ¨º¬±ß½ç£©ÈÎÒâµã£¬²¢ÇÒ$\overrightarrow{OP}$=x$\overrightarrow{OA}$+y$\overrightarrow{OC}$£¬ÏÂÁÐÕýÈ·µÄÊÇ¢Ù¢Û¢Ý
¢Ù0¡Üx+y¡Ü1£»
¢Ú|x|+|y|¡Üx2+y2£»
¢Ûx2+y2¡Ü2£»
¢Ü´æÔÚÎÞÊý¸öµãP£¬Ê¹µÃx=-1£»
¢Ý´æÔÚÎÞÊý¸öµãP£¬Ê¹µÃy=1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÉèÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=t\\ y={t^2}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÈôÒÔÖ±½Ç×ø±êϵµÄÔ­µãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏß${C_2}£º¦Ñsin£¨¦È-\frac{¦Ð}{3}£©=1$
£¨1£©ÇóÇúÏßC1µÄ¼«×ø±ê·½³Ì£»
£¨2£©ÈôÇúÏßC1ÓëÇúÏßC2ÏཻÓÚA¡¢B£¬ÇóÏÒABµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®½«Ô²x2+y2=1ÉÏÿһµãµÄ×Ý×ø±ê²»±ä£¬ºá×ø±ê±äΪԭÀ´µÄ$\frac{1}{3}$£¬µÃÇúÏßC£®
£¨¢ñ£©Ð´³öCµÄ²ÎÊý·½³Ì£»
£¨¢ò£©ÉèÖ±Ïßl£º3x+y+1=0ÓëCµÄ½»µãΪP1¡¢P2£¬ÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬Çó¹ýÏß¶ÎP1P2µÄÖеãÇÒÓël´¹Ö±µÄÖ±Ïߵļ«×ø±ê·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®ÉèµÈ²îÊýÁÐ{an}µÄ¹«²îd£¼0£¬Ç°nÏîºÍΪSn£¬ÒÑÖª3$\sqrt{5}$ÊÇ-a2Óëa9µÄµÈ±ÈÖÐÏS10=20£¬Ôòd=-2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®ÉèiΪÐéÊýµ¥Î»£¬Ôò¸´Êý$\frac{3-4i}{i}$=-4-3i£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸