精英家教网 > 高中数学 > 题目详情
2.已知α为钝角,sinα=$\frac{3}{4}$,则cos($\frac{π}{2}$-α)=$\frac{3}{4}$.

分析 直接利用三角函数的诱导公式求值.

解答 解:∵sinα=$\frac{3}{4}$,
∴cos($\frac{π}{2}$-α)=sinα=$\frac{3}{4}$.
故答案为:$\frac{3}{4}$.

点评 本题考查三角函数的化简求值,考查了诱导公式的应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.在△ABC中,角A,B,C所对的边分别是a,b,c,若sinC+sin(B-A)=2sin2A,且 c=2,$∠C=\frac{π}{3}$,则△ABC的面积为(  )
A.$\frac{{2\sqrt{3}}}{3}$B.$\sqrt{3}$C.$\frac{{4\sqrt{3}}}{3}$D.$\frac{{5\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设${\vec e_1},{\vec e_2}$为单位向量,非零向量$\vec b=x{\vec e_1}+y{\vec e_2},x,y∈R$.若${\vec e_1},{\vec e_2}$的夹角为$\frac{π}{6}$,则$\frac{|x|}{{|{\vec b}|}}$的最大值等于(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=x2
(1)若曲线f(x)的一条切线的斜率是2,求切点的坐标;
(2)求在点(-1,f(-1))处的切线方程;
(3)求过点(1,-2)处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.一几何体的三视图如图所示,则这个几何体的体积为(  )
A.32B.16C.$\frac{32}{3}$D.$\frac{16}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.一个几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{32}{3}$B.$\frac{50}{3}$C.$\frac{64}{3}$D.$\frac{80}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.甲、乙、丙三位同学获得某项竞赛活动的前三名,但具体名次未知.3人作出如下预测:
甲说:我不是第三名;
乙说:我是第三名;
丙说:我不是第一名.
若甲、乙、丙3人的预测结果有且只有一个正确,由此判断获得第一名的是乙.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知直线l经过点P(1,0)且与以A(2,1),B(3,-2)为端点的线段AB有公共点,则直线l的倾斜角的取值范围是[0,45°]∪[135°,180°).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.下列说法中,正确的有③④.(写出所有正确说法的序号)
①已知关于x的不等式mx2+mx+1>0的解集为R,则实数m的取值范围是0<m<4.
②已知等比数列{an}的前n项和为Sn,则Sn、S2n-Sn、S3n-S2n也构成等比数列.
③已知a>0,b>-1,且a+b=1,则$\frac{{a}^{2}+2}{a}$+$\frac{{b}^{2}}{b+1}$的最小值为$\frac{3+2\sqrt{2}}{2}$.
④在△DEF中,DE=2,EF=3,∠DEF=60°,M是DF的中点,N在EF上,且DN⊥ME,则$\overrightarrow{DN}$•$\overrightarrow{EF}$=$\frac{9}{4}$.

查看答案和解析>>

同步练习册答案