精英家教网 > 高中数学 > 题目详情
20.以下四个对应中,构成映射的是(  )
A.①②B.②③C.②④D.①④

分析 逐一分析各个选项中的对应是否满足映射的概念,即前一个集合中的每一个元素在后一个集合中是否都有唯一确定的元素和它对应.

解答 解:如果一个集合中的任何元素在另一个集合中都有唯一确定的一个元素和它对应,则此对应构成映射.
故①④构成映射,
②不能构成映射,因为前边的集合中的元素3在后一个集合中没有元素和它对应,故此对应不是映射.
③中的元素1对应了两个数,所以③中的对应不是映射.
故选D.

点评 本题考查映射的概念,即一个集合中的任何元素在另一个集合中都有唯一确定的一个元素和它对应,则此对应构成映射.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知等差数列{an}中,a1=2,a3+a5=10.
(1)求数列{an}的通项公式;
(2)设bn=an•2n,求数列{$\frac{1}{{b}_{n}}$ }的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=lnx-ax,
(1)当a=1时,求函数f(x)在x=e处的切线方程;
(2)当a=2时,求函数f(x)的极值;
(3)求函数f(x) 在[1,e]上 的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知偶函数f(x)的图象关于直线x=3对称,且f(5)=1,则f(-1)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设等比数列{an}的前n项和为Sn,已知,a1=2,且4S1,3S2,2S3成等差数列.
(Ⅰ)求数列{an}的公比q
(Ⅱ)设bn=n+an,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=2cos2x+2$\sqrt{3}$sinxcosx+a的最大值为2.
(1)求a的值,并求函数f(x)图象的对称轴方程;
(2)将函数y=f(x)的图象向右平移$\frac{π}{12}$个单位,得到函数y=g(x)的图象,求函数g(x)在区间[$\frac{π}{6}$,$\frac{π}{3}$]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在△ABC中,如果lga-lgc=lgsinB=lg$\frac{\sqrt{2}}{2}$,且B为锐角,此三角形的形状(  )
A.钝角三角形B.直角三角形C.等腰直角三角形D.等边三角形

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.水平放置的△ABC,有一边在水平线上,用斜二测画法作出的直观图是正三角形A′B′C′,则△ABC是钝角三角形(填“锐角”“直角”或“钝角”)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.过圆O:x2+y2=1上一点M(a,b)的切线方程为ax+by-1=0.

查看答案和解析>>

同步练习册答案