分析 (I)由4S1,3S2,2S3成等差数列.可得2×3S2=4S1+2S3.即6a1(1+q)=4a1+2a1(1+q+q2),a1≠0,解得q.
(II)由(I)可得:an=2n.bn=n+an=n+2n,利用等差数列与等比数列的求和公式即可得出.
解答 解:(I)∵4S1,3S2,2S3成等差数列.∴2×3S2=4S1+2S3.
∴6a1(1+q)=4a1+2a1(1+q+q2),a1≠0,
化为:q2-2q=0,q≠0,解得q=2.
(II)由(I)可得:an=2n.
bn=n+an=n+2n.
∴数列{bn}的前n项和Tn=$\frac{n(n+1)}{2}$+$\frac{2({2}^{n}-1)}{2-1}$
=$\frac{n(n+1)}{2}$+2n+1-2.
点评 本题考查了等差数列与等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | (-$\frac{1}{4}$,+∞) | B. | [-$\frac{1}{4}$,+∞) | C. | [-$\frac{1}{4}$,0) | D. | [-$\frac{1}{4}$,0] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com