精英家教网 > 高中数学 > 题目详情
求函数y=
x2-8x+20
+
x2+1
的最小值.
考点:函数的值域
专题:函数的性质及应用
分析:把原函数解析式变成:y=
(x-4)2+(0-2)2
+
(x-0)2+(0-1)2
,所以y可看成平面直角坐标系中,点(x,0)到点A(4,2)的距离与点(x,0)到点B(0,1)的距离的和,所以作(4,2)关于x轴的对称点C,连接BC,则BC的长度便是y的最小值,所以求BC的长度即可.
解答: 解:y=
x2-8x+20
+
x2+1
=
(x-4)2+(0-2)2
+
(x-0)2+(0-1)2

∴y表示平面直角坐标系中:点(x,0)到点A(4,2)的距离与点(x,0)到点B(0,1)的距离的和;
如图:

作A点关于x轴的对称点C(4,-2),连接BC,则BC的长度即是y的最小值;
∴|BC|=
16+9
=5

∴原函数y的最小值是5.
点评:考查平面直角坐标系中两点间的距离公式,转化的方法:将求函数的最小值转化成求距离和的最小值,数形结合的解题方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知O为坐标原点,向量
OA
=(sinα,1),
OB
=(cosα,0),
OC
=(-sinα,2),点P是直线AB上的一点,且
AB
=
BP

(Ⅰ)若O,P,C三点共线,求以线段OA,OB为邻边的平行四边形的对角线长;
(Ⅱ)记函数f(α)=
BP
CA
,α∈(-
π
8
π
2
),试求函数f(α)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C过点P(
2
2
2
2
),且与圆M:(x+2)2+(y+2)2=r2(r>0)关于直线x+y+2=0对称.
(Ⅰ)求圆C的方程;
(Ⅱ)设Q为圆C上的一个动点,求
PQ
MQ
的最小值;
(Ⅲ)过点P作两条相异直线分别与圆C相交于A,B,且直线PA和直线PB的倾斜角互补,O为坐标原点,试判断直线OP和AB是否平行?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的参数方程为
x=
3
2
cosθ
y=
1
2
sinθ
(θ为参数),直线L的参数方程为
x=1+t
y=1-t
(t为参数)
(1)求椭圆C的焦点坐标;
(2)若参数θ∈[
π
2
3
],试求椭圆C上的点到直线L的距离的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知⊙C的圆心为(3,1),且与y轴相切.若⊙C与直线x-y+a=0交于A,B两点,且OA⊥OB,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

化简集合A={x|y=
x+1
-
1
2-x
}.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是首项为a1=
1
4
,公比q=
1
4
的等比数列,设bn+2=3log 
1
4
an(∈N*),数列{cn}满足cn=an•bn
(1)求证:{bn}是等差数列;
(2)求数列{bn}的前n项和Sn
(3)(理科)求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(x-2)ex和g(x)=kx3-x-2
(1)若函数g(x)在区间(1,2)不单调,求k的取值范围;
(2)当x∈[0,+∞)时,不等式f(x)≥g(x)恒成立,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某化肥厂甲、乙两个车间包装化肥,在自动包装传送带上每隔30分钟抽取一包,称其重量,分别记录抽查的重量数据,并画出其茎叶图如图所示,则乙车间样本的中位数与甲车间样本的中位数的差是
 

查看答案和解析>>

同步练习册答案