分析 利用等比数列的前n项和公式和通项公式列出方程组,求出${a}_{1}q=8,{q}^{3}=-\frac{1}{2}$,由此能求出a8的值.
解答 解:∵等比数列{an}的前n项和为Sn,若S3,S9,S6成等差数列.且a2+a5=4,
∴$\left\{\begin{array}{l}{2×\frac{{a}_{1}(1-{q}^{9})}{1-q}=\frac{{a}_{1}(1-{q}^{3})}{1-q}+\frac{{a}_{1}(1-{q}^{6})}{1-q}}\\{{a}_{1}q+{a}_{1}{q}^{4}=4}\end{array}\right.$,
解得${a}_{1}q=8,{q}^{3}=-\frac{1}{2}$,
∴a8=${a}_{1}{q}^{7}$=(a1q)(q3)2=8×$\frac{1}{4}$=2.
故答案为:2.
点评 本题考查等比数列中第8项的求法,是基础题,解题时要认真审题,注意等比数列的性质的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | $\frac{2}{3}$ | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{31}{15}$ | B. | -$\frac{7}{5}$ | C. | -$\frac{31}{17}$ | D. | -$\frac{21}{17}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | e0=1与ln 1=0 | B. | log39=2与9${\;}^{\frac{1}{2}}$=3 | ||
| C. | 8${\;}^{-\frac{1}{3}}$=$\frac{1}{2}$与log8$\frac{1}{2}$=-$\frac{1}{3}$ | D. | log77=1与71=7 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com