精英家教网 > 高中数学 > 题目详情
20.若${C}_{n}^{0}$+${C}_{n}^{1}$+…+${C}_{n}^{n}$=256,则${(x+\frac{1}{2\sqrt{x}})}^{n}$的展开式中含x5项的系数为7.(用数字作答)

分析 根据组合数公式求出n的值,再利用二项式展开式的通项公式求出展开式中含x5项的系数.

解答 解:${C}_{n}^{0}$+${C}_{n}^{1}$+…+${C}_{n}^{n}$=2n=256,
∴n=8;
∴${(x+\frac{1}{2\sqrt{x}})}^{8}$展开式中,通项公式为:
Tr+1=${C}_{8}^{r}$•x8-r•${(\frac{1}{2\sqrt{x}})}^{r}$=${(\frac{1}{2})}^{r}$•${C}_{8}^{r}$•${x}^{8-\frac{3}{2}r}$,
令8-$\frac{3}{2}$r=5,解得r=2;
∴展开式中含x5项的系数为${(\frac{1}{2})}^{2}$•${C}_{8}^{2}$=7.
故答案为:7.

点评 本题考查了组合数公式与二项式定理的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.小明去上海参加科技创新大赛,只能选择飞机、轮船、火车、汽车这四种交通工具中的一种,已知他乘坐飞机、轮船、火车、汽车的概率分别为0.2、0.3、0.4、0.1.
(1)求小明乘火车或飞机的概率.
(2)求小明不乘轮船的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=2sinx+tanx-2x.
(1)证明:函数f(x)在$(-\frac{π}{2},\frac{π}{2})$上单调递增;
(2)若$x∈(0,\frac{π}{2})$,f(x)<mx2,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$夹角为60°,且|$\overrightarrow{a}$|=2,|$\overrightarrow{a}$-2$\overrightarrow{b}$|=2$\sqrt{7}$,则|$\overrightarrow{b}$|=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在国际风帆比赛中,成绩以低分为优胜,比赛共11场,并以最佳的9场成绩计算最终的名次.在一次国际风帆比赛中,前7场比赛结束后,排名前8位的选手积分如表:
运动员比赛场次 总分
1234567891011
 A 32 2 2 6     21
 B 110     28 
 C 9    28 
 D 7    35 
 E12     42 
 F 4 11    47 
 G 1012 12 12 10     71 
 H12 12 12  7 12 12    73
(1)根据表中的比赛数据,比较A与B的成绩及稳定情况;
(2)从前7场平均分低于6.5的运动员中,随机抽取2个运动员进行兴奋剂检查,求至少1个运动员平均分不低于5分的概率.
(3)请依据前7场比赛的数据,预测冠亚军选手,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在多面体ABCDE中,平面ABC⊥平面BCE,四边形ABED为平行四边形,AB=AC=BC=2,CE=1,BE=$\sqrt{5}$,O为AC的中点.
(1)求证:BO⊥AE;
(2)求平面ABC与平面ACD所成锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设等比数列{an}的前n项和为Sn,若S3,S9,S6成等差数列.且a2+a5=4,则a8的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知数列{an}满足an=$\left\{\begin{array}{l}{(\frac{1}{2}-a)n+1(n<6)}\\{{a}^{n-5}(n≥6)}\end{array}\right.$若对于任意的n∈N*都有an>an+1,则实数a的取值范围是(  )
A.(0,$\frac{1}{2}$)B.($\frac{1}{2}$,$\frac{7}{12}$)C.($\frac{1}{2}$,1)D.($\frac{7}{12}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数$y=\frac{{|{x+1}|-|{x-1}|}}{{\sqrt{x^2}+1}}$是(  )
A.奇函数B.偶函数
C.非奇非偶函数D.既是奇函数又是偶函数

查看答案和解析>>

同步练习册答案