精英家教网 > 高中数学 > 题目详情
11.已知P为椭圆$\frac{{y}^{2}}{8}$+$\frac{{x}^{2}}{2}$=1上一点,A、B分别为椭圆的上、下顶点,直线PA、PB分别与直线x=-2交于点C、D,O为坐标原点,则△OCD的面积的最小值为8-4$\sqrt{2}$.

分析 设P($\sqrt{2}cosα$,2$\sqrt{2}sinα$),0≤α≤2π,A(0,2$\sqrt{2}$),B(0,-2$\sqrt{2}$),求出直线PA和直线PB,由直线PA、PB分别与直线x=-2交于点C、D,求出C(-2,$\frac{2\sqrt{2}cosα-4sinα+4}{cosα}$),D(-2,-$\frac{4sinα+2\sqrt{2}cosα+4}{cosα}$),由此能求出△OCD的面积的最小值.

解答 解:∵P为椭圆$\frac{{y}^{2}}{8}$+$\frac{{x}^{2}}{2}$=1上一点,A、B分别为椭圆的上、下顶点,
∴P($\sqrt{2}cosα$,2$\sqrt{2}sinα$),0≤α≤2π,A(0,2$\sqrt{2}$),B(0,-2$\sqrt{2}$),
∴直线PA:$\frac{y-2\sqrt{2}}{x}=\frac{2\sqrt{2}(sinα-1)}{\sqrt{2}cosα}$,直线PB:$\frac{y+2\sqrt{2}}{x}$=$\frac{2\sqrt{2}(sinα+1)}{\sqrt{2}cosα}$,
∵直线PA、PB分别与直线x=-2交于点C、D,
∴C(-2,$\frac{2\sqrt{2}cosα-4sinα+4}{cosα}$),D(-2,-$\frac{4sinα+2\sqrt{2}cosα+4}{cosα}$),
∴△OCD的面积S=$\frac{1}{2}×2×$|$\frac{2\sqrt{2}cosα-4sinα+4}{cosα}$+$\frac{4sinα+2\sqrt{2}cosα+4}{cosα}$|=|4$\sqrt{2}$+$\frac{8}{cosα}$|,
∴当cosα=-1时,△OCD的面积的最小值为Smin=8-4$\sqrt{2}$.
故答案为:8-4$\sqrt{2}$.

点评 本题考查三角形面积的最小值的求法,是中档题,解题时要认真审题,注意椭圆参数方程、直线方程、三角函数的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.记集合A={x|x+2>0},B={y|y=sinx,x∈R},则A∪B=(  )
A.(-2,+∞)B.[-1,1]C.[-1,1]∪[2,+∞)D.(-2,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.(x+2y)7展开式中系数最大的项是(  )
A.68y7B.112x3y4C.672x2y5D.1344x2y5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知i是虚数单位,则i2016=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某衬衫进价为每件80元,零售价为每件100元,现每买一件送礼品一份进行促销,若礼品为1元时销售量增加10%;若礼品为2元时,销售量比礼品为1元时又增加10%;若礼品为3元时,销售量比礼品为2元时再增加10%;…,以此类推.(1)试写出礼品为n元时(n≤20),盈利值f(n)的解析式;
(2)当礼品为多少元时盈利最多?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0),A(0,-b),B(0,b),P为双曲线上的一点,且|AB|=|BP|,则双曲线离心率的取值范围是(  )
A.[$\sqrt{2}$,+∞)B.(1,$\frac{\sqrt{5}}{2}$]C.[$\frac{\sqrt{5}+1}{2}$,+∞)D.[$\frac{\sqrt{10}+\sqrt{2}}{4}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),右焦点F($\sqrt{2}$,0),点D($\sqrt{2}$,1)在椭圆上
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)已知直线l:y=kx与椭圆C交于A,B两点,P为椭圆C上异于A,B的动点;若直线PA,PB的斜率都存在,判断kPA•kPB是否为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知事件“在矩形ABCD的边CD上随机取一点P,使△APB的最大边是AB”发生的概率为$\frac{3}{5}$,则$\frac{AD}{AB}$=(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知{an}为等差数列,且a3=-6,a6=0.
(I)求{an}的前n项和Sm
(Ⅱ)若等比数列{bn}满足b1=-8,b2=a1+a2+a3,求{bn}的通项公式.

查看答案和解析>>

同步练习册答案