精英家教网 > 高中数学 > 题目详情
20.在等差数列{an}中,a7=8,前7项和S7=42,则其公差是(  )
A.-$\frac{1}{3}$B.-$\frac{2}{3}$C.$\frac{1}{3}$D.$\frac{2}{3}$

分析 直接由已知结合等差数列的通项公式和前n项和列式求得公差.

解答 解:设等差数列{an}的首项为a1,公差为d,
由a7=8,S7=42,得
$\left\{\begin{array}{l}{{a}_{1}+6d=8}\\{7{a}_{1}+\frac{7×6}{2}d=42}\end{array}\right.$,解得:$\left\{\begin{array}{l}{{a}_{1}=4}\\{d=\frac{2}{3}}\end{array}\right.$.
故选:D.

点评 本题考查了等差数列的通项公式,考查了等差数列的前n项和,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知MN是椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{9}$=1中垂直于长轴的动弦,A、B是椭圆长轴的两个端点,求直线MA和NB交点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图1,在平面多边形ABEDC中,△ABC是正三角形,四边形BCDE是矩形,AB=2,CD=2$\sqrt{3}$,沿BC将△ABC折起,组成四棱锥A′-BCDE,如图2,F、G分别是A′B,A′E的中点.
(1)求证:A′C∥平面BDG;
(2)当三棱锥A′-BCE的体积最大时,求平面BCE与平面CEF的夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图所示,椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)与直线AB:y=$\frac{1}{2}$x+1相切于点A.
(1)求a,b满足的关系式,并用a,b表示点A的坐标;
(2)设F是椭圆的右焦点,若△AFB是以F为直角顶点的等腰直角三角形,求椭圆C的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.化简以下各式:
①$\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{CA}$;
②$\overrightarrow{AB}-\overrightarrow{AC}+\overrightarrow{BD}-\overrightarrow{CD}$;
③$\overrightarrow{FQ}+\overrightarrow{QP}+\overrightarrow{EF}$-$\overrightarrow{EP}$
④$\overrightarrow{OA}-\overrightarrow{OB}+\overrightarrow{AB}$
其结果是为零向量的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设函数f(x)=x+$\frac{1}{x}$+alnx,其中a∈R.
(Ⅰ)设f(x)的极小值点为x=t,请将a用t表示;
(Ⅱ)记f(x)的极小值为g(t),证明:
(1)g(t)=g($\frac{1}{t}$);
(2)函数y=g(t)恰有两个零点,且互为倒数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设幂函数f(x)的图象经过点(8,4),则函数f(x)的奇偶性为偶函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知集合A={-1,0,1,2,3}B={x|x2>1},则A∩∁RB=(  )
A.{0}B.{-1,0,1}C.{-1,1,2,3}D.{-1,0,1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若复数z满足z+2i=$\frac{2i}{1-i}$,则在复平面内,z对应的点的坐标是(  )
A.(-1,-1)B.(-1,1)C.(1,-1)D.(1,1)

查看答案和解析>>

同步练习册答案