分析 如图所示,设M(x0,y0),N(x0,-y0).直线AM的方程为:y=$\frac{{y}_{0}}{{x}_{0}+4}(x+4)$,(x0≠-4),直线BN的方程为:y=-$\frac{{y}_{0}}{{x}_{0}-4}(x-4)$,(x0≠4),两式相乘可得:y2=-$\frac{{y}_{0}^{2}}{{x}_{0}^{2}-16}({x}^{2}-16)$.再利用点M在椭圆上即可得出.
解答 解:如图所示,![]()
设M(x0,y0),N(x0,-y0).
直线AM的方程为:y=$\frac{{y}_{0}}{{x}_{0}+4}(x+4)$,(x0≠-4)
直线BN的方程为:y=-$\frac{{y}_{0}}{{x}_{0}-4}(x-4)$,(x0≠4)
两式相乘可得:y2=-$\frac{{y}_{0}^{2}}{{x}_{0}^{2}-16}({x}^{2}-16)$.
∵点M在椭圆上,∴$\frac{{x}_{0}^{2}}{16}+\frac{{y}_{0}^{2}}{9}$=1,
∴-$\frac{{y}_{0}^{2}}{{x}_{0}^{2}-16}$=$\frac{9}{16}$.
∴${y}^{2}=\frac{9}{16}({x}^{2}-16)$,
化为$\frac{{x}^{2}}{16}-\frac{{y}^{2}}{9}=1$,
当x0=±4时,上式也成立.
∴直线MA和NB交点P的轨迹方程为$\frac{{x}^{2}}{16}-\frac{{y}^{2}}{9}=1$.
点评 本题考查了椭圆的标准方程及其性质、直线的点斜式及其交点,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{1}{3}$ | B. | -$\frac{2}{3}$ | C. | $\frac{1}{3}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com