精英家教网 > 高中数学 > 题目详情
12.设全集U=R,函数f(x)=lg(|x+1|-1)的定义域为A,集合B={x|sinπx=0},则(∁UA)∩B的元素个数为(  )
A.1B.2C.3D.4

分析 由对数式的真数大于0求得集合A,求解三角方程化简集合B,然后利用交、并、补集的混合运算得答案.

解答 解:由|x+1|-1>0,得|x+1|>1,即x<-2或x>0.
∴A={x|x<-2或x>0},则∁UA={x|-2≤x≤0};
由sinπx=0,得:πx=kπ,k∈Z,∴x=k,k∈Z.
则B={x|sinπx=0}={x|x=k,k∈Z},
则(∁UA)∩B={x|-2≤x≤0}∩{x|x=k,k∈Z}={-2,-1,0}.
∴(∁UA)∩B的元素个数为3.
故选:C.

点评 本题考查了交、并、补集的混合运算,考查了对数函数的定义域,考查了三角函数值的求法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.过点A(2,0)且垂直于极轴的直线L的极坐标方程是ρcosθ=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.执行如图所示的程序框图,其输出结果是(  )
A.61B.62C.63D.64

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知i是虚数单位,且复数z1=2+bi,z2=1-2i,若$\frac{z_1}{z_2}$是实数,则实数b=-4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.执行如图所示的伪代码,则输出的结果的集合为{2,5,10}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知1是lga与lgb的等比中项,若a>1,b>1,则ab有(  )
A.最小值10B.最小值100C.最大值10D.最大值100

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若实数x,y满足约束条件$\left\{\begin{array}{l}x≥1\\ y≥0\\ x+y≤4\end{array}$,则z=$\frac{2^x}{2^y}$的最小值为(  )
A.16B.1C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知点E(-$\frac{p}{2}$,0),动点A,B均在抛物线C:y2=2px(p>0)上,若$\overrightarrow{EA}$•$\overrightarrow{EB}$的最小值为(  )
A.-2p2B.-p2C.0D.2p

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知kCnk=nCn-1k-1(1≤k≤n,且k,n∈N*)可以得到几种重要的变式,如:$\frac{1}{k}C_{n-1}^{k-1}=\frac{1}{n}$Cnk,将n+1赋给n,就得到kCn+1k=(n+1)Cnk-1,…,进一步能得到:1Cn1+2Cn2•21+…+nCnn•2n-1=nCn-10+nCn-11•21+nCn-12•22+…+nCn-1n-1•2n-1=n(1+2)n-1=n•3n-1
请根据以上材料所蕴含的数学思想方法与结论,计算:Cn0×$\frac{1}{3}$+$\frac{1}{2}$Cn1×($\frac{1}{3}$)2+$\frac{1}{3}$Cn2×($\frac{1}{3}$)3+…+$\frac{1}{n+1}$Cnn×($\frac{1}{3}$)n+1=$\frac{1}{n+1}[{(\frac{4}{3})^{n+1}}-1]$.

查看答案和解析>>

同步练习册答案