精英家教网 > 高中数学 > 题目详情
8.已知kCnk=nCn-1k-1(1≤k≤n,且k,n∈N*)可以得到几种重要的变式,如:$\frac{1}{k}C_{n-1}^{k-1}=\frac{1}{n}$Cnk,将n+1赋给n,就得到kCn+1k=(n+1)Cnk-1,…,进一步能得到:1Cn1+2Cn2•21+…+nCnn•2n-1=nCn-10+nCn-11•21+nCn-12•22+…+nCn-1n-1•2n-1=n(1+2)n-1=n•3n-1
请根据以上材料所蕴含的数学思想方法与结论,计算:Cn0×$\frac{1}{3}$+$\frac{1}{2}$Cn1×($\frac{1}{3}$)2+$\frac{1}{3}$Cn2×($\frac{1}{3}$)3+…+$\frac{1}{n+1}$Cnn×($\frac{1}{3}$)n+1=$\frac{1}{n+1}[{(\frac{4}{3})^{n+1}}-1]$.

分析 由$kC_{n+1}^k=(n+1)C_n^{k-1}$,可得$\frac{1}{k}C_n^{k-1}=\frac{1}{n+1}C_{n+1}^k$,即$\frac{1}{k}C_n^{k-1}{(\frac{1}{3})^k}=\frac{1}{n+1}C_{n+1}^k{(\frac{1}{3})^k}$,再利用二项式定理即可得出.

解答 解:由$kC_{n+1}^k=(n+1)C_n^{k-1}$,得$\frac{1}{k}C_n^{k-1}=\frac{1}{n+1}C_{n+1}^k$,$\frac{1}{k}C_n^{k-1}{(\frac{1}{3})^k}=\frac{1}{n+1}C_{n+1}^k{(\frac{1}{3})^k}$,
∴$C_n^0×\frac{1}{3}+\frac{1}{2}C_n^1×{(\frac{1}{3})^2}+\frac{1}{3}C_n^2×{(\frac{1}{3})^3}+…+\frac{1}{n+1}C_n^n{(\frac{1}{3})^{n+1}}$
=$\frac{1}{n+1}C_{n+1}^0×{(\frac{1}{3})^0}+\frac{1}{n+1}C_{n+1}^1×{(\frac{1}{3})^1}+\frac{1}{n+1}C_{n+1}^2×{(\frac{1}{3})^2}+…+\frac{1}{n+1}C_{n+1}^{n+1}{(\frac{1}{3})^n}$
=$\frac{1}{n+1}[{(1+\frac{1}{3})^{n+1}}-1]=\frac{1}{n+1}[{(\frac{4}{3})^{n+1}}-1]$.
故案为:$\frac{1}{n+1}[{(\frac{4}{3})^{n+1}}-1]$.

点评 本题考查了二项式定理的应用、组合数的计算公式及其性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.设全集U=R,函数f(x)=lg(|x+1|-1)的定义域为A,集合B={x|sinπx=0},则(∁UA)∩B的元素个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若动圆的圆心在抛物线y=$\frac{1}{12}$x2上,且与直线y+3=0相切,则此圆恒过定点(  )
A.(0,2)B.(0,-3)C.(0,3)D.(0,6)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知抛物线Γ:x2=2py(p>0)上一点P(4,m)到焦点F的距离为$\frac{5}{4}m$.
(Ⅰ)求Γ的方程;
(Ⅱ)过点C(0,2)的直线交Γ于A,B两点,以AB为直径的圆交y轴于M,N两点,证明:$\overrightarrow{OM}•\overrightarrow{ON}$为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知集合A={0,2,3,4,5,7},B={1,2,3,4,6},C={x|x∈A,x∉B},则C的元素的个数为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.2016年高考报名体检中,某市共有40000名男生参加体检,体检其中一项为测量身高,统计调查数据显示所有男生的身高服从正态分布N(170,16),统计人员从市一中高三的参加体检的男生中随机抽取了50名进行身高测量,所得数据全部介于162cm和186cm之间,并将测量数据分成6组:第一组[162,166),第二组[166,170),…,第六组[182,186),然后按上述分组方式绘制得到如图所示的频率分布直方图.
(1)试评估市一中高三年级参加体检的男生在全市高三年级参加体验的男生中的平均身高状况(同一组中的数据用该区间的中间值作代表);
(2)在这50名参加体检的男生身高在178cm以上(含178cm)的人中任意抽取3人,将该3人中身高排名(从高到低)在全市参加体检的高三男生身高前52名的人数记为X,求X的数学期望.
参考数据:
若X~N(μ,δ2),则P(μ-δ<X≤μ+δ)=0.6826,P(μ-2δ<X≤μ+2δ)=0.9544,P(μ-3δ<X≤μ+3δ)=0.9974.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.△ABC的内角A,B,C所对的边分别为a,b,c,已知a=$\sqrt{3}$,b=$\sqrt{6}$,∠A=$\frac{π}{6}$,则∠B=(  )
A.$\frac{π}{4}$B.$\frac{π}{4}$或$\frac{3π}{4}$C.$\frac{π}{3}$或$\frac{2π}{3}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知i是虚数单位,则(1-2i)(2+i)=(  )
A.4-3iB.3-4iC.-3-4iD.-4+3i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在我校自编操比赛中,甲班、乙班、丙班、丁班均可从A、B、C三首不同曲目中任选一首.
(1)求甲、乙两班选择不同曲目的概率;
(2)设这四个班级总共选取了X首曲目,求X的分布列及数学期望E(X).

查看答案和解析>>

同步练习册答案