13£®2016Äê¸ß¿¼±¨ÃûÌå¼ìÖУ¬Ä³Êй²ÓÐ40000ÃûÄÐÉú²Î¼ÓÌå¼ì£¬Ìå¼ìÆäÖÐÒ»ÏîΪ²âÁ¿Éí¸ß£¬Í³¼Æµ÷²éÊý¾ÝÏÔʾËùÓÐÄÐÉúµÄÉí¸ß·þ´ÓÕý̬·Ö²¼N£¨170£¬16£©£¬Í³¼ÆÈËÔ±´ÓÊÐÒ»ÖиßÈýµÄ²Î¼ÓÌå¼ìµÄÄÐÉúÖÐËæ»ú³éÈ¡ÁË50Ãû½øÐÐÉí¸ß²âÁ¿£¬ËùµÃÊý¾ÝÈ«²¿½éÓÚ162cmºÍ186cmÖ®¼ä£¬²¢½«²âÁ¿Êý¾Ý·Ö³É6×飺µÚÒ»×é[162£¬166£©£¬µÚ¶þ×é[166£¬170£©£¬¡­£¬µÚÁù×é[182£¬186£©£¬È»ºó°´ÉÏÊö·Ö×鷽ʽ»æÖƵõ½ÈçͼËùʾµÄƵÂÊ·Ö²¼Ö±·½Í¼£®
£¨1£©ÊÔÆÀ¹ÀÊÐÒ»ÖиßÈýÄê¼¶²Î¼ÓÌå¼ìµÄÄÐÉúÔÚÈ«ÊиßÈýÄê¼¶²Î¼ÓÌåÑéµÄÄÐÉúÖÐµÄÆ½¾ùÉí¸ß×´¿ö£¨Í¬Ò»×éÖеÄÊý¾ÝÓøÃÇø¼äµÄÖмäÖµ×÷´ú±í£©£»
£¨2£©ÔÚÕâ50Ãû²Î¼ÓÌå¼ìµÄÄÐÉúÉí¸ßÔÚ178cmÒÔÉÏ£¨º¬178cm£©µÄÈËÖÐÈÎÒâ³éÈ¡3ÈË£¬½«¸Ã3ÈËÖÐÉí¸ßÅÅÃû£¨´Ó¸ßµ½µÍ£©ÔÚÈ«ÊвμÓÌå¼ìµÄ¸ßÈýÄÐÉúÉí¸ßǰ52ÃûµÄÈËÊý¼ÇΪX£¬ÇóXµÄÊýѧÆÚÍû£®
²Î¿¼Êý¾Ý£º
ÈôX¡«N£¨¦Ì£¬¦Ä2£©£¬ÔòP£¨¦Ì-¦Ä£¼X¡Ü¦Ì+¦Ä£©=0.6826£¬P£¨¦Ì-2¦Ä£¼X¡Ü¦Ì+2¦Ä£©=0.9544£¬P£¨¦Ì-3¦Ä£¼X¡Ü¦Ì+3¦Ä£©=0.9974£®

·ÖÎö £¨1£©ÓÉÆµÂÊ·Ö²¼Ö±·½Í¼Çó³ö¸ÃУ¸ßÈýÄê¼¶²Î¼ÓÌå¼ìµÄÄÐÉúµÄƽ¾ùÉí¸ß£¬ÓÉ´ËÄÜÇó³ö½á¹û£®
£¨2£©ÓÉÆµÂÊ·Ö²¼Ö±·½Í¼ÖªºóÁ½×鯵ÂÊΪ0.12£¬´Ó¶øÕâ50Ãû²Î¼ÓÌå¼ìµÄÄÐÉúÖÐÉí¸ßÔÚÖ°78cmÒÔÉÏ£¨º¬178cm£©µÄÈËÊýΪ6ÈË£¬½ø¶øµÃµ½È«ÊвμÓÌå¼ìµÄÄÐÉúÉí¸ßǰ52ÃûµÄÉí¸ßÔÚ182cmÒÔÉÏ£¬Ëæ»ú±äÁ¿XµÄȡֵΪ0£¬1£¬2£¬·Ö±ðÇó³öÏàÓ¦µÄ¸ÅÂÊ£¬ÓÉ´ËÄÜÇó³öXµÄ·Ö²¼ÁкÍE£¨X£©£®

½â´ð ½â£º£¨1£©ÓÉÆµÂÊ·Ö²¼Ö±·½Í¼µÃ¸ÃУ¸ßÈýÄê¼¶²Î¼ÓÌå¼ìµÄÄÐÉúµÄƽ¾ùÉí¸ßΪ£º
£¨164¡Á$\frac{5}{100}$+168¡Á$\frac{7}{100}$+172¡Á$\frac{8}{100}$+176¡Á$\frac{2}{100}$+180¡Á$\frac{2}{100}$+184¡Á$\frac{1}{100}$£©¡Á4=170.72£¨cm£©£®
¸ßÓÚÈ«ÊÐµÄÆ½¾ùÖµ170cm£®
£¨2£©ÓÉÆµÂÊ·Ö²¼Ö±·½Í¼ÖªºóÁ½×鯵ÂÊΪ£¨0.02+0.01£©¡Á4=0.12£¬
ÈËÊýΪ0.12¡Á50=6£¬
¼´Õâ50Ãû²Î¼ÓÌå¼ìµÄÄÐÉúÖÐÉí¸ßÔÚÖ°78cmÒÔÉÏ£¨º¬178cm£©µÄÈËÊýΪ6ÈË£¬
¡ßP£¨170-3¡Á4£¼X¡Ü170+3¡Á4£©=0.9974£¬
¡àP£¨X¡Ý182£©=$\frac{1-0.9974}{2}$=0.0013£¬
0.0013¡Á4000=52£¬
¡àÈ«ÊвμÓÌå¼ìµÄÄÐÉúÉí¸ßǰ52ÃûµÄÉí¸ßÔÚ182cmÒÔÉÏ£¬
Õâ50ÈËÖУ¬182cmÒÔÉϵÄÓÐ0.01¡Á4¡Á5=2ÈË£¬
¡àËæ»ú±äÁ¿XµÄȡֵΪ0£¬1£¬2£¬
ÔòP£¨X=0£©=$\frac{{C}_{4}^{3}}{{C}_{6}^{3}}$=$\frac{1}{5}$£¬
P£¨X=1£©=$\frac{{C}_{2}^{1}{C}_{4}^{2}}{{C}_{6}^{3}}$=$\frac{3}{5}$£¬
P£¨X=2£©=$\frac{{C}_{2}^{2}{C}_{4}^{1}}{{C}_{6}^{3}}$=$\frac{1}{5}$£¬
¡àXµÄ·Ö²¼ÁÐΪ£º

 X 0 1 2
 P $\frac{1}{5}$ $\frac{3}{5}$ $\frac{1}{5}$
E£¨X£©=$0¡Á\frac{1}{5}+1¡Á\frac{3}{5}+2¡Á\frac{1}{5}$=1£®

µãÆÀ ±¾Ì⿼²éƵÂÊ·Ö²¼Ö±·½Í¼µÄÇ󷨣¬¿¼²é¸ÅÂʵÄÇ󷨣¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâÅÅÁÐ×éºÏ֪ʶµÄºÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÒÑÖª1ÊÇlgaÓëlgbµÄµÈ±ÈÖÐÏÈôa£¾1£¬b£¾1£¬ÔòabÓУ¨¡¡¡¡£©
A£®×îСֵ10B£®×îСֵ100C£®×î´óÖµ10D£®×î´óÖµ100

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®Ò»¸ö¿Õ¼ä¼¸ºÎÌåµÄÈýÊÓͼÈçͼËùʾ£¬Ôò¼¸ºÎÌåµÄÌå»ýΪ£¨¡¡¡¡£©
A£®$\frac{¦Ð}{6}$B£®$\frac{¦Ð}{4}$C£®$\frac{¦Ð}{3}$D£®$\frac{¦Ð}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®f£¨x£©=£¨x-a£©£¨x-b£©£¨ÆäÖÐa£¾b£©µÄͼÏóÈçͼËùʾ£¬Ôòº¯Êýg£¨x£©=loga£¨x-b£©µÄͼÏó´óÖÂÊÇ£¨¡¡¡¡£©
A£®B£®C£®D£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®ÒÑÖªkCnk=nCn-1k-1£¨1¡Ük¡Ün£¬ÇÒk£¬n¡ÊN*£©¿ÉÒԵõ½¼¸ÖÖÖØÒªµÄ±äʽ£¬È磺$\frac{1}{k}C_{n-1}^{k-1}=\frac{1}{n}$Cnk£¬½«n+1¸³¸øn£¬¾ÍµÃµ½kCn+1k=£¨n+1£©Cnk-1£¬¡­£¬½øÒ»²½Äܵõ½£º1Cn1+2Cn2•21+¡­+nCnn•2n-1=nCn-10+nCn-11•21+nCn-12•22+¡­+nCn-1n-1•2n-1=n£¨1+2£©n-1=n•3n-1£®
Çë¸ù¾ÝÒÔÉϲÄÁÏËùÔ̺¬µÄÊýѧ˼Ïë·½·¨Óë½áÂÛ£¬¼ÆË㣺Cn0¡Á$\frac{1}{3}$+$\frac{1}{2}$Cn1¡Á£¨$\frac{1}{3}$£©2+$\frac{1}{3}$Cn2¡Á£¨$\frac{1}{3}$£©3+¡­+$\frac{1}{n+1}$Cnn¡Á£¨$\frac{1}{3}$£©n+1=$\frac{1}{n+1}[{£¨\frac{4}{3}£©^{n+1}}-1]$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÒÑÖª¼¯ºÏM={x|lg£¨x-2£©¡Ü0}£¬N={x|-1¡Üx¡Ü3}£¬ÔòM¡ÈN=£¨¡¡¡¡£©
A£®{x|x¡Ü3}B£®{x|2£¼x£¼3}C£®ND£®R

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®Ä³¿Õ¼ä¼¸ºÎÌåµÄÈýÊÓͼÈçͼËùʾ£¬Ôò¸Ã¼¸ºÎÌåµÄÌå»ýΪ£¨¡¡¡¡£©
A£®$\frac{7}{3}$B£®$\frac{8-¦Ð}{3}$C£®$\frac{8}{3}$D£®$\frac{7-¦Ð}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÔÚÊýÁÐ{an}ÖУ¬Èô´æÔÚ·ÇÁãÕûÊýT£¬Ê¹µÃam+T=am¶ÔÓÚÈÎÒâµÄÕýÕûÊým¾ù³ÉÁ¢£¬ÄÇô³ÆÊýÁÐ{an}ΪÖÜÆÚÊýÁУ¬ÆäÖÐT½Ð×öÊýÁÐ{an}µÄÖÜÆÚ£¬ÈôÊýÁÐ{xn}Âú×ãxn+1=|xn-xn-1|£¨n¡Ý2£¬n¡ÊN£©£¬Èçx1=1£¬x2=a£¨a¡ÊR£¬a¡Ù0£©£¬µ±ÊýÁÐ{xn}µÄÖÜÆÚ×îСʱ£¬¸ÃÊýÁеÄǰ2016ÏîµÄºÍΪ£¨¡¡¡¡£©
A£®672B£®673C£®1342D£®1344

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÒÑÖªº¯Êýf£¨x£©=Asin£¨2x+¦Õ£©+k£¨A£¾0£¬k£¾0£©µÄ×î´óֵΪ4£¬×îСֵΪ2£¬ÇÒf£¨x0£©=2£¬Ôòf£¨x0+$\frac{¦Ð}{4}$£©=£¨¡¡¡¡£©
A£®1B£®2C£®3D£®4

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸