精英家教网 > 高中数学 > 题目详情
18.已知集合M={x|lg(x-2)≤0},N={x|-1≤x≤3},则M∪N=(  )
A.{x|x≤3}B.{x|2<x<3}C.ND.R

分析 首先化简集合M,然后根据并集的定义求出M∪N.

解答 解:∵lg(x-2)≤0=log21,
∴0<x-2≤1,
解得2<x≤3,
∴M={x|2<x≤3},
∵N={x|-1≤x≤3},
∴M∪N={x|-1≤x≤3}=N,
故选:C.

点评 本题考查学生理解并集的定义,会进行并集的运算,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知a∈R,“函数y=3x+a-1有零点”是“函数y=logax在(0,+∞)上为减函数”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.网格纸上小正方形的边长为1,如图画出的是某几何体的三视图,则该几何体的体积为(  )
A.44B.56C.68D.72

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设变量x,y满足约束条件$\left\{\begin{array}{l}{y≤2x}\\{y≥\frac{1}{2}x}\\{x≤k}\end{array}\right.$,且目标函数z=2x+y的最大值为3,则k=$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.2016年高考报名体检中,某市共有40000名男生参加体检,体检其中一项为测量身高,统计调查数据显示所有男生的身高服从正态分布N(170,16),统计人员从市一中高三的参加体检的男生中随机抽取了50名进行身高测量,所得数据全部介于162cm和186cm之间,并将测量数据分成6组:第一组[162,166),第二组[166,170),…,第六组[182,186),然后按上述分组方式绘制得到如图所示的频率分布直方图.
(1)试评估市一中高三年级参加体检的男生在全市高三年级参加体验的男生中的平均身高状况(同一组中的数据用该区间的中间值作代表);
(2)在这50名参加体检的男生身高在178cm以上(含178cm)的人中任意抽取3人,将该3人中身高排名(从高到低)在全市参加体检的高三男生身高前52名的人数记为X,求X的数学期望.
参考数据:
若X~N(μ,δ2),则P(μ-δ<X≤μ+δ)=0.6826,P(μ-2δ<X≤μ+2δ)=0.9544,P(μ-3δ<X≤μ+3δ)=0.9974.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.2016年春节期间全国流行在微信群里发、抢红包,现假设某人将688元发成手气红包50个,产生的手气红包频数分布表如表:
全额分组[1,5)[5,9)[9,13)[13,17)[17,21)[21,25]
频数39171182
(I)求产生的手气红包的金额不小于9元的频率;
(Ⅱ)估计手气红包金额的平均数(同一组中的数据用该组区间的中点值作代表);
(Ⅲ)在这50个红包组成的样本中,将频率视为概率.
(i)若红包金额在区间[21,25]内为最佳运气手,求抢得红包的某人恰好是最佳运气手的概率;
(ii)随机抽取手气红包金额在[1,5)∪[-21,25]内的两名幸运者,设其手气金额分别为m,n,求事件“|m-n|>16”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0)的图象与直线y=b(0<b<A)相交,其中一个交点P的横坐标为4,若与P相邻的两个交点的横坐标为2,8,则函数f(x)(  )
A.在[0,3]上是减函数B.在[-3,0]上是减函数
C.在[0,π]上是减函数D.在[-π,0]上是减函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设点O是边长为1的正△ABC的中心(如图所示),则($\overrightarrow{OA}$+$\overrightarrow{OB}$)•($\overrightarrow{OA}$+$\overrightarrow{OC}$)=(  )
A.$\frac{1}{9}$B.-$\frac{1}{9}$C.-$\frac{1}{6}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\frac{2x}{3x+2}$,数列{an}满足a1=1,an+1=f(an).
(1)求数列{an}的通项公式;
(2)(理)设bn=anan+1,数列{bn}的前n项和为Sn,若Sn<$\frac{m-2016}{2}$对一切正整数n都成立,求最小的正整数m的值.
(2)(文)设bn=$\frac{1}{a_n}$×2n,数列{bn}的前n项和为Sn,求Sn

查看答案和解析>>

同步练习册答案