精英家教网 > 高中数学 > 题目详情
6.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下数据:男生中爱好运动的有40人,不爱好运动的有20人;女生中爱好运动的有20人,不爱好运动的有30人.则正确的结论是(  )
A.在犯错误概率不超过0.1%的前提下,认为“爱好该运动与性别有关”
B.在犯错误概率不超过0.1%的前提下,认为“爱好该运动与性别无关”
C.有99%以上的把握认为“爱好该运动与性别有关”
D.有99%以上的把握认为“爱好该运动与性别无关”

分析 根据题意填写列联表,由表中数据计算观测值,对照临界值得出结论.

解答 解:根据题意得到如下2×2列联表:

 男总计 
 爱好402060
 不爱好203050
 总计 6050110
由表中数据计算观测值K2=$\frac{110{×(40×30-20×20)}^{2}}{60×50×60×50}$≈7.822>6.635,
对照临界值得出,有99%以上的把握认为“爱好该运动与性别有关”.
故选:C.

点评 本题考查了列联表与独立性检验的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.如图,底面是正三角形的直三棱柱ABC-A1B1C1中,D是BC的中点,AA1=AB=2.
(Ⅰ)求证:A1C∥平面AB1D;
(Ⅱ)求直线A1D与平面AB1D所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知关于x的不等式ax2+bx+c>0的解集为{x|1<x<2},则不等式cx2-bx+a>0的解集为(-1,-$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数$f(x)=\frac{{\sqrt{|x|}}}{e^x}$,若关于x的方程f(x)-m+1=0恰有三个不等实根,则实数m的取值范围为$({1,\frac{{\sqrt{2e}}}{2e}+1})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若a>b>0,c<d<0,则一定有(  )
A.$\frac{a}{d}$>$\frac{b}{c}$B.$\frac{a}{c}$<$\frac{b}{c}$C.$\frac{a}{c}$>$\frac{b}{d}$D.$\frac{a}{c}$<$\frac{b}{d}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设{an}是公比大于1的等比数列,Sn为数列{an}的前n项和.已知S3=7,且a1+3,3a2,a3+4构成等差数列.
(1)求数列{an}的通项;
(2)令bn=an+n,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列各数中,与cos1030°相等的是(  )
A.cos 50°B.-cos 50°C.sin 50°D.-sin 50°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.计算下列定积分:
(1)${∫}_{2}^{5}$(3x2-2x+5)dx
(2)${∫}_{0}^{2π}$(cos x-sin x)dx.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在△ABC中,内角A、B、C所对的边分别是a、b、c,若b2=ac,A=30°,则$\frac{bsinB}{c}$=(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{3}{4}$

查看答案和解析>>

同步练习册答案