精英家教网 > 高中数学 > 题目详情
10.(log3$\sqrt{3}$)2-3${\;}^{2lo{g}_{3}2}$+log0.25$\frac{1}{4}$+($\frac{-1}{\sqrt{2}}$)-4=$\frac{5}{4}$.

分析 直接利用对数运算法则化简求解即可.

解答 解:(log3$\sqrt{3}$)2-3${\;}^{2lo{g}_{3}2}$+log0.25$\frac{1}{4}$+($\frac{-1}{\sqrt{2}}$)-4
=$\frac{1}{4}$-4+1+4=$\frac{5}{4}$.
故答案为:$\frac{5}{4}$.

点评 本题考查对数运算法则的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.设x∈R,则x>π的一个必要不充分条件是(  )
A.x>3B.x<3C.x>4D.x<4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.化简tan20°+4sin20°的结果为(  )
A.1B.$\frac{1}{2}$C.$\frac{{\sqrt{3}}}{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知定点 A($-\frac{1}{2}$,0),B是圆C:(x $-\frac{1}{2}$)2+y2=4上的一个动点,线段AB的垂直平分线交BC于M点,求动点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知直线a、b及平面α,在下列命题:中,正确的有(  )
①$\left.{\begin{array}{l}{b?α}\\{a⊥α}\end{array}}\right\}⇒a⊥b$②$\left.{\begin{array}{l}{a⊥b}\\{a⊥α}\end{array}}\right\}⇒b∥α$
③$\left.{\begin{array}{l}{a∥b}\\{a⊥α}\end{array}}\right\}⇒b⊥α$④$\left.{\begin{array}{l}{a∥α}\\{b?α}\end{array}}\right\}⇒a∥b$.
A.、①②B.②③C.③④D.①③

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知曲线C的极坐标方程是ρ=4sinθ,设直线l的参数方程$\left\{\begin{array}{l}x=-\frac{3}{5}t+2\\ y=\frac{4}{5}t\end{array}\right.(t$为参数).
(1)将曲线C的极坐标方程转化为直角坐标方程;
(2)设直线l与曲线C的交点是M,N,求|MN|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.随着机动车数量的迅速增加,停车难已是很多小区共同面临的问题.某小区甲、乙两车共用一停车位,并且都要在该泊位停靠8小时,假定它们在一昼夜的时间段中随机到达,试求两车中有一车在停泊位时,另一车必须等待的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知p:M={(x,y)|tx-y≤3},且(2,1)∈M,(1,-4)∉M,q:集合A={x|-2≤x≤5},B={x|t+1≤x≤2t-1},且B⊆A,若p或q为真,p且q为假,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设等差数列$5,4\frac{2}{7},3\frac{4}{7},…$的前n和为Sn,若使得Sn最大,则n等于(  )
A.7B.8C.6或7D.7或8

查看答案和解析>>

同步练习册答案