精英家教网 > 高中数学 > 题目详情
8.若y=a|x|与y=x+a(a>0)有两个公共点.则a的取值范围是(  )
A.(1.+∞)B.(0.1)C.D.(0.1)U(1,+∞)

分析 画出图形,对a分类讨论,利用斜率与截距之间的关系即可得出.

解答 解:y=a|x|=$\left\{\begin{array}{l}{ax,x≥0}\\{-ax,x<0}\end{array}\right.$,
当a=1时,两条直线平行;
当a<1时,两条直线有且只有一个公共点;
当a>1时,曲线y=a|x|与直线y=x+a(a>0)有两个公共点.
故选A.

点评 本题考查了直线斜率与截距之间的关系、直线的交点、分类讨论方法,考查了数形结合的思想方法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.如图,在△ABC中,已知∠BAC=$\frac{π}{3}$,|$\overrightarrow{AB}$|=2,|$\overrightarrow{AC}$|=3,点D为边BC上一点,满足$\overrightarrow{AC}$+2$\overrightarrow{AB}$=3$\overrightarrow{AD}$,点E是AD上一点,满足$\overrightarrow{AE}$=2$\overrightarrow{ED}$,则|$\overrightarrow{BE}$|=$\frac{2\sqrt{19}}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知等差数列{an}满足:a1=1,an+1>an(n∈N*),a1+1,a2+1,a3+3成等比数列.an+2log2bn=-1.
(1)求数列{an},{bn}的通项公式;
(2)求数列{an•bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知集合A={x|(x-3)(x+1)≥0},$B=\{y|y<-\frac{4}{5}\}$,则A∩B=(  )
A.{x|x≤-1}B.{x|x≥3}C.$\{x|x<-\frac{5}{4}\}$D.$\{x|-\frac{5}{4}≤x<-1\}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知f(x)=$\frac{{x}^{2}}{2x+1}$,f1(x)=f(x),fn(x)=$\underset{\underbrace{f(…f(x)…)}}{n个f}$,则${f_{10}}(\frac{1}{2})$=$\frac{1}{{{3^{1024}}-1}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=$\frac{4x-2}{x+1}$,由x1=a,xn+1=f(xn)产生的无穷数列{xn},对任意正整数n均有xn<xn+1成立,则a的取值范围是(1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数$f(x)=\frac{1}{2}cos({2x-φ})\;\;({0<φ<π})$,其图象过点$({\frac{π}{6},\frac{1}{2}})$.
(1)求φ值;
(2)将函数y=f(x)图象上各点横坐标缩短到原来的$\frac{1}{2}$倍,纵坐标不变,得到函数y=g(x)的图象,求y=g(x)在x∈$[{0,\frac{π}{4}}]$上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.集合A={x|x≥0},B={x|x2-1<0},则A∩B=(  )
A.(-1,0]B.[0,1]C.(-1,1)D.[0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧面PAD是正三角形,且平面PAD⊥平面ABCD.
(1)求证:AB⊥平面PAD;
(2)求直线PC与底面ABCD所成角的余弦值.

查看答案和解析>>

同步练习册答案