精英家教网 > 高中数学 > 题目详情
9.已知f(x)=$\frac{{2+ln{x^2}}}{x}$.
(1)求函数f(x)的单调区间;
(2)若不等式ex(2x3-3x2)-lnx-ax>1恒成立,求a的取值范围.

分析 (1)利用导函数的符号判断函数的单调性,求解单调区间即可.
(2)由不等式ex(2x3-3x2)-lnx-ax>1恒成立,得到${e^x}(2{x^2}-3x)-a>\frac{lnx+1}{x}$恒成立,设$g(x)={e^x}(2{x^2}-3x)-a,h(x)=\frac{lnx+1}{x}$,求出$g'(x)={e^x}(2{x^2}+x-3)={e^x}(2x+3)(x-1),h'(x)=\frac{-lnx}{x^2}$
利用函数的单调性求出函数的最值,即可求解a的范围.

解答 解:(1)由$f(x)=\frac{{2+ln{x^2}}}{x}$得:$f'(x)=\frac{{\frac{2}{x}x-2-ln{x^2}}}{x^2}=\frac{{-ln{x^2}}}{x^2}$
由于定义域为{x|x≠0},
所以由y'>0得:0<x<1或-1<x<0
所以由y'<0得:x<-1或x>1
即得函数在区间(0,1),(-1,0)上单调递增,在区间(-∞,-1),(1,+∞)上单调递减.
(2)由不等式ex(2x3-3x2)-lnx-ax>1恒成立,
即${e^x}(2{x^2}-3x)-a>\frac{lnx+1}{x}$恒成立
设$g(x)={e^x}(2{x^2}-3x)-a,h(x)=\frac{lnx+1}{x}$得:
$g'(x)={e^x}(2{x^2}+x-3)={e^x}(2x+3)(x-1),h'(x)=\frac{-lnx}{x^2}$,
因为它们的定义域(0,+∞),所以易得:
函数g(x)在(0,1)上单调递减,(1,+∞)上单调递增;
函数h(x)在(0,1)上单调递增,(1,+∞)上单调递减;
这两个函数在x=1处,g(x)有最小值,h(x)有最大值,
所以要使不等式${e^x}(2{x^2}-3x)-a>\frac{lnx+1}{x}$恒成立,
则只需满足$e(2-3)-a>\frac{ln1+1}{1}$,即a<-1-e.

点评 本题考查函数的导数的综合应用,函数的最值以及函数恒成立转化思想的应用,考查分析问题解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.设函数$f(x)=cos({2x+\frac{π}{3}})+{sin^2}x$.
(1)求函数y=f(x)的最大值和最小正周期;
(2)设A、B、C为△ABC的三个内角,若$cosB=\frac{1}{3}$,$f({\frac{C}{3}})=-\frac{1}{4}$,求sinA.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=x(1+a|x|)(a∈R),则在同一个坐标系下函数f(x+a)与f(x)的图象不可能的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.随着“全面二孩”政策推行,我市将迎来生育高峰,今年新春伊始,各医院产科就已经一片忙碌,至今热度不减,卫生部门进行调查统计,期间发现各医院的新生儿中,不少都是“二孩”,在人民医院,共有50个宝宝降生,其中25个是“二孩”宝宝;博爱医院共有30个宝宝降生,其中10个是“二孩”宝宝.
(1)根据以上数据,完成下面的2×2列联表,并判断是否有90%的把握认为一孩或二孩宝宝的出生与医院有关?
 一孩二孩合计
人民医院   
博爱医院   
合计   
(2)从两个医院当前出生的所有宝宝中按分层抽样方法抽取8个宝宝做健康咨询,若从这8个宝宝抽取两个宝宝进行体检.求这两个宝宝恰好都是来自人民医院的概率.
附:${K^2}=\frac{{n{{({αb-bc})}^2}}}{{({α+b})({c+d})({α+c})({b+d})}}$
P(k2>k00.40.250.150.10
k00.7081.3232.0722.706

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知$\overrightarrow a=({sin\frac{ω}{2}x,sinωx}),\overrightarrow b=({sin\frac{ω}{2}x,\frac{1}{2}})$,其中ω>0,若函数$f(x)=\overrightarrow a•\overrightarrow b-\frac{1}{2}$在区间(π,2π)内没有零点,则ω的取值范围是(  )
A.$({0,\frac{1}{8}}]$B.$({0,\frac{5}{8}}]$C.$({0,\frac{1}{8}}]∪[{\frac{5}{8},1}]$D.$({0,\frac{1}{8}}]∪[{\frac{1}{4},\frac{5}{8}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.执行如图的程序框图,输出的结果为(  )
A.136B.134C.268D.266

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在△ABC中,角A,B,C所对的边为a,b,c,满足sin2A+sin2C-sin2B=$\sqrt{3}$sinA•sinC
(Ⅰ)求角B;
(Ⅱ)点D在线段BC上,满足DA=DC,且a=11,cos(A-C)=$\frac{\sqrt{5}}{5}$,求线段DC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知一个圆锥底面半径为1,母线长为3,则该圆锥内切球的表面积为(  )
A.πB.$\frac{3π}{2}$C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知sin($\frac{π}{2}$-α)=-$\frac{3}{5}$,0<α<π,则sin2α=-$\frac{24}{25}$.

查看答案和解析>>

同步练习册答案