精英家教网 > 高中数学 > 题目详情
15.如图,矩形ABCD中,AB=2,BC=4,将△ABD沿对角线BD折起到△A′BD的位置,使点A′在平面BCD内的射影点O恰好落在BC边上,则异面直线A′B与CD所成角的大小为90°.

分析 由AB∥CD可得∠A′BA即为异面直线A′B与CD所成角,连接A′A,AO,由已知中矩形ABCD中,AB=2,BC=4,点A'在平面BCD内的射影点O恰好落在BC边上,利用勾股定理求出AA′的长度,可求出异面直线A′B与CD所成角的大小.

解答 解:由于A'O⊥平面ABCD
∴A'O⊥DC
又∵BC⊥DC,BC∩A'O=O
∴DC⊥平面A'BC
DC⊥A'B
即异面直线A′B与CD所成角的大小为90°.
故答案是:90°.

点评 本题考查的知识点是异面直线及其所成的角,其中根据异面直线夹角的定义构造出所求的角,是解答此题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知命题p:函数f(x)=$\frac{1}{3}$x3-x2+(5-a2)x+a在R上的增函数;命题q:函数g(x)=$\frac{e^x}{x}$在[a,+∞)上单调递增,若“p∨(¬q)”为真命题,“(¬p)∨q”也为真命题,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.命题“若a2+b2=0,则a=0或b=0”的否命题是(  )
A.若a≠0或b≠0,则a2+b2≠0B.若a2+b2≠0,则a≠0且b≠0
C.若a=0且b=0,则 a2+b2≠0D.若a2+b2≠0,则a≠0或b≠0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.△ABC中,角A,B,C的对边分别为a,b,c,且满足bcosA=(2c+a)cos(C+A)•
(I)求角B的大小;
( II)若b=4,△ABC的面积为$\sqrt{3}$,求a+c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知△ABC的外接圆半径为1,圆心为O,且满足$\overrightarrow{OA}$+2$\overrightarrow{OB}$+4$\overrightarrow{OC}$=$\overrightarrow{0}$,则$\overrightarrow{AB}$•$\overrightarrow{OC}$=(  )
A.-$\frac{15}{16}$B.-$\frac{7}{16}$C.$\frac{7}{16}$D.$\frac{15}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点分别为F1,F2.若椭圆上存在点P使∠F1PF2=90°.则椭圆的离心率的取值范围是$\frac{\sqrt{2}}{2}$≤e<1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设实数x,y满足$\left\{\begin{array}{l}{2x+y≤6}\\{x+2y≤6}\\{x≥0,y≥0}\end{array}\right.$,则Z=max{2x+y-1,x+2y+2}的取值范围是[-1,5].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知数列{an}中a1=1,an=$\frac{1}{2}$an-1+1(n≥2),则an=(  )
A.2-($\frac{1}{2}$)n-1B.($\frac{1}{2}$)n-1-2C.2-2n-1D.2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.如图是一个由两个半圆锥与一个长方体组合而成的几何体的三视图,则该几何体的体积为$\frac{2π}{3}$+4.

查看答案和解析>>

同步练习册答案