精英家教网 > 高中数学 > 题目详情
5.线段AB与平面α平行,α的斜线A1A、B1B与α所成的角分别为30°和60°,且∠A1AB=∠B1BA=90°,AB=2,A1B1=4,求AB与平面α的距离.

分析 求直线到平面的距离常转化为求点到平面的距离.作AG⊥α于点G,BH⊥α于点H,连接A1G、B1H、GH,作B1C⊥A1G于点C,则通过解三角形可得AG的长度.另外,此题还要考虑到当A1、B1分居平面AH两侧时,AG的长度.故本题AB与平面α的距离有两个答案.

解答 解:如图,作AG⊥α于点G,BH⊥α于点H
连接A1G、B1H、GH,
∵A1A⊥AB,
∴A1G⊥GH.
同理,B1H⊥GH.
作B1C⊥A1G于点C,则B1C=GH=AB=2,∠AA1G=30°,∠BB1H=60°.
设B1H=x,则CG=B1H=x,AG=BH=$\sqrt{3}$x,A1G=3x=x+A1C=x+$\sqrt{{4}^{2}-{2}^{2}}$.
所以x=$\sqrt{3}$,AG=BH=3.
当A1、B1分居平面AH两侧时,类似可得AG=BH=$\frac{3}{2}$.
故求AB与平面α的距离为3或$\frac{3}{2}$.

点评 本题主要考查直线到平面的距离、点到平面的距离、直线与平面所成的角等基本知识,同时考查空间想象能力和推理、运算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.曲线f(x)=$\frac{1}{2}$x2在点(1,$\frac{1}{2}$)处的切线方程为(  )
A.2x+2y+1=0B.2x+2y-1=0C.2x-2y-3=0D.2x-2y-1=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知直线m:x+2y-3=0,函数y=3x+cosx的图象与直线l相切于P点,若l⊥m,则P点的坐标可能是(  )
A.(-$\frac{π}{2}$,-$\frac{3π}{2}$)B.($\frac{π}{2}$,$\frac{3π}{2}$)C.($\frac{3π}{2}$,$\frac{π}{2}$)D.(-$\frac{3π}{2}$,-$\frac{π}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=ln(x+b)+$\frac{ax}{x+1}$的图象在点(0,f(0))处的切线方程式3x-y=0,求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知数列{an}满足a1=1,若点($\frac{{a}_{n}}{n}$,$\frac{{a}_{n+1}}{n+1}$)在直线x-y+1=0上,则an=n2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=xsinx+cosx(x>0).
(1)当x∈(0,2π)时,求f(x)的极值;
(2)记xi为f(x)的从小到大的第i(i∈N*)个极值点,证明:$\frac{1}{{{x}_{2}}^{2}}$+$\frac{1}{{{x}_{3}}^{2}}$+…+$\frac{1}{{{x}_{n}}^{2}}$<$\frac{2}{9}$(n≥2,n∈N)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知ABCD是平行四边形,E,F分别是AB,BC的中点,DE∩AC=G,DF∩AC=H,若AB=2BC,则△ADG与△CDH的面积之比$\frac{{S}_{△ABC}}{{S}_{△CDH}}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}是各项均为正数的等差数列,且lga1,lga2,lga4成等差数列,若bn=$\frac{1}{{a}_{{2}^{n}}}$(n=1,2,3,…),求证:数列{bn}为等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知直线l:y=kx+1(k≠0)与椭圆3x2+y2=a相交于A、B两个不同的点,记l与y轴的交点为C.
(Ⅰ)若k=1,且|AB|=$\frac{\sqrt{10}}{2}$,求实数a的值;
(Ⅱ)若$\overrightarrow{AC}$=2$\overrightarrow{CB}$,求△AOB面积的最大值,及此时椭圆的方程.

查看答案和解析>>

同步练习册答案