1£®ÒÑÖªÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=2+\frac{\sqrt{2}}{2}t}\\{y=1+\frac{\sqrt{2}}{2}t}\end{array}\right.$£¬£¨tΪ²ÎÊý£©£¬ÒÔÔ­µãΪ¼«µã£¬ÒÔxÖáÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ¦Ñ2£¨4cos2¦È+9sin2¦È£©=36£®
£¨1£©ÇóÇúÏßC1µÄÆÕͨ·½³ÌºÍÇúÏßC2µÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©ÒÑÖªµãPµÄ×ø±êΪ£¨-2£¬-3£©£¬ÉèÇúÏßC1ºÍC2ÏཻÓÚµãM£¬N£¬Çó|PM|•|PN|µÄÖµ£®

·ÖÎö £¨1£©°ÑÇúÏßC1µÄ²ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì£¬ÇúÏßC2µÄ¼«×ø±ê·½³Ì»¯ÎªÆÕͨ·½³Ì£»
£¨2£©ÇúÏßC1¹ýµãP£¬Çãб½ÇΪ$\frac{¦Ð}{4}$£¬Ð´³öËüµÄ²ÎÊý·½³Ì£¬´úÈëC2ÖУ¬ÀûÓÃ|PM|•|PN|=|t1•t2|£¬¼´¿ÉÇó³öÖµ£®

½â´ð ½â£º£¨1£©¡ßÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=2+\frac{\sqrt{2}}{2}t}\\{y=1+\frac{\sqrt{2}}{2}t}\end{array}\right.$£¬£¨tΪ²ÎÊý£©£¬
ÏûÈ¥²ÎÊýt£¬»¯ÎªÆÕͨ·½³ÌÊÇx-y=1£¬
ÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ¦Ñ2£¨4cos2¦È+9sin2¦È£©=36£¬
»¯ÎªÆÕͨ·½³ÌÊÇ4x2+9y2=36£¬
¼´$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1£»
£¨2£©¡ßµãPµÄ×ø±êΪ£¨-2£¬-3£©£¬¡àÇúÏßC1¹ýµãP£¬
ÇÒÇãб½ÇΪ$\frac{¦Ð}{4}$£¬
¡àËüµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=-2+\frac{\sqrt{2}}{2}t}\\{y=-3+\frac{\sqrt{2}}{2}t}\end{array}\right.$£¬
´úÈëC2£º$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1ÖУ¬
»¯¼òµÃ£º13t2-70$\sqrt{2}$t+122=0£¬
¡àt1•t2=$\frac{122}{13}$£¬
¼´|PM|•|PN|=|t1|•|t2|=t1t2=$\frac{122}{13}$£®

µãÆÀ ±¾Ì⿼²éÁ˲ÎÊý·½³ÌÓë¼«×ø±êµÄÓ¦ÓÃÎÊÌ⣬Ҳ¿¼²éÁËÖ±ÏßÓëÍÖÔ²·½³ÌµÄÓ¦ÓÃÎÊÌ⣬ÊÇ×ÛºÏÐÔÌâÄ¿£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÈôOÊÇ¡÷ABCËùÔÚÆ½ÃæÄÚÒ»µã£¬ÇÒÂú×㣨$\overrightarrow{BO}+\overrightarrow{OC}$£©•£¨$\overrightarrow{OC}$-$\overrightarrow{OA}$£©=0£¬Ôò¡÷ABCÒ»¶¨ÊÇ£¨¡¡¡¡£©
A£®µÈ±ßÈý½ÇÐÎB£®µÈÑüÖ±½ÇÈý½ÇÐÎC£®Ö±½ÇÈý½ÇÐÎD£®Ð±Èý½ÇÐÎ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®ÒÑÖªsin$\frac{¦Á}{2}$=$\frac{3}{5}$£¬cos$\frac{¦Á}{2}$=-$\frac{4}{5}$£¬ÄÇô¦ÁµÄÖÕ±ßÔÚµÚËÄ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖªº¯Êýf£¨x£©=ax3+bx2+cx+dÊÇʵÊý¼¯RÉÏµÄÆæº¯Êý£¬ÇÒÔÚx=1´¦È¡µÃ¼«Ð¡Öµ-2£®
£¨1£©Çóf£¨x£©µÄ±í´ïʽ£»
£¨2£©ÒÑÖªº¯Êýg£¨x£©=|x|-2£¬ÅжϹØÓÚxµÄ·½³Ìf£¨g£¨x£©£©-k=0½âµÄ¸öÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®Ä³°à³ï°ìµÄÔªµ©Íí»áÓÉ6¸ö½ÚÄ¿×é³É£¬ÆäÖÐÓÐÒ»¸öСƷ¡¢Ò»¸öÏàÉù¡¢Ò»¸öÊ«ÀÊËУ¬Ñݳö˳ÐòÓÐÈçÏÂÒªÇó£ºÐ¡Æ·±ØÐëÅÅÔÚǰÁ½Î»£¬ÏàÉù²»ÄÜÅÅÔÚµÚһλ£¬Ê«ÀÊËв»ÄÜÅÅÔÚ×îºóһ룬Ôò¸Ã´ÎÍí»á½ÚÄ¿µÄÑݳö˳ÐòµÄ±àÅÅ·½°¸ÓÐ174ÖÖ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®Èô${¡Ò}_{1}^{2}$£¨2x+$\frac{a}{x}$£©dx=3+ln2£¬Ôò³£ÊýaµÄֵΪ£¨¡¡¡¡£©
A£®1B£®2C£®-1D£®0

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÒÑÖªf£¨x£©=x3£¬Èôx¡Ê[1£¬2]ʱ£¬f£¨x2-ax£©+f£¨1-x£©¡Ü0£¬ÔòaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®a¡Ü1B£®a¡Ý1C£®a¡Ý$\frac{3}{2}$D£®a¡Ü$\frac{3}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÒÑÖªa£¾0£¬º¯Êýf£¨x£©=$\frac{|x-2a|}{x+2a}$ÔÚÇø¼ä[1£¬4]ÉϵÄ×î´óÖµµÈÓÚ$\frac{1}{3}$£¬ÔòaµÄֵΪ£¨¡¡¡¡£©
A£®$\frac{1}{4}$B£®1C£®2D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÒÑÖªÍÖÔ²CµÄ·½³ÌΪ£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©£¬ÍÖÔ²µÄ×óÓÒ½¹µãF1£¬F2ÓëÆä¶ÌÖáµÄ¶Ëµã¹¹³ÉµÈ±ßÈý½ÇÐΣ¬ÇÒÂú×ãa2=4c£¨cÊÇÍÖÔ²CµÄ°ë½¹¾à£©£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÉèÖ±Ïßl£º3x-2y=0ÓëÍÖÔ²CÔÚxÖáÉÏ·½µÄÒ»¸ö½»µãΪP£¬FÊÇÍÖÔ²µÄÓÒ½¹µã£¬ÊÔ̽¾¿ÒÔPFΪֱ¾¶µÄÔ²ÓëÒÔÍÖÔ²³¤ÖáΪֱ¾¶µÄÔ²µÄλÖùØÏµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸