精英家教网 > 高中数学 > 题目详情
11.若O是△ABC所在平面内一点,且满足($\overrightarrow{BO}+\overrightarrow{OC}$)•($\overrightarrow{OC}$-$\overrightarrow{OA}$)=0,则△ABC一定是(  )
A.等边三角形B.等腰直角三角形C.直角三角形D.斜三角形

分析 利用向量垂直与数量积的关系即可判断出.

解答 解:∵($\overrightarrow{BO}+\overrightarrow{OC}$)•($\overrightarrow{OC}$-$\overrightarrow{OA}$)=0,
∴$\overrightarrow{BC}•\overrightarrow{AC}$=0,
∴C=90°.
∴△ABC一定是直角三角形.
故选:C.

点评 本题考查了向量垂直与数量积的关系、三角形形状的判定,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的长轴长是短轴长的$\sqrt{3}$倍,且经过点($\sqrt{3}$,1).
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设点M(0,2),直线l:y=1,过M任作一条不与y轴重合的直线l1,与椭圆相交于A、B两点,过AB的中点N作直线l2与y轴交于点P,D为N在直线l上的射影,若|AB|2=4|ND|•|MP|,求直线l2的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}满足a1=$\frac{1}{2}$,an+1=an+$\frac{1}{n^2}$an2
(Ⅰ)求a2,a3的值;
(Ⅱ)证明:an<n(n∈N*);
(Ⅲ)当n≥3(n∈N*)时,证明:an>$\frac{6n}{5n+6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在区间(0,2]里任取两个数x、y,分别作为点P的横、纵坐标,则点P到点A(-1,1)的距离小于$\sqrt{2}$的概率为(  )
A.$\frac{4-π}{8}$B.$\frac{π-2}{4}$C.$\frac{4-π}{4}$D.$\frac{π-2}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在平面直角坐标系xOy中,A、B、C构成直角三角形,∠A=90°,斜边端点B,C的坐标分别为(-2,0)和(2,0),设斜边BC上高线的中点为M,求动点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设函数g(x)=x2-2x+1+mlnx,(m∈R).
(1)当m=1时,求函数y=g(x)在点(1,0)处的切线方程;
(2)求函数y=g(x)的单调递增区间;
(3)若函数y=g(x)在x∈($\frac{1}{4}$,+∞)上有两个极值点a,b,且a<b,记{x}表示大于x的最小整数,求{g(a)}-{g(b)}的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.一机器元件的三视图及尺寸如图所示(单位:dm),则该组合体的体积为(  )
A.80 dm3B.88 dm3C.96 dm3D.120 dm3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知向量$\overrightarrow{a}$=(-2,2),$\overrightarrow{b}$=(-8,6),平面向量$\overrightarrow{c}$满足$\overrightarrow{a}$•$\overrightarrow{c}$=0,$\overrightarrow{b}$•$\overrightarrow{c}$=2,则$\overrightarrow{c}$等于(  )
A.(1,2)B.(-1,-2)C.(1,1)D.(-1,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知曲线C1的参数方程为$\left\{\begin{array}{l}{x=2+\frac{\sqrt{2}}{2}t}\\{y=1+\frac{\sqrt{2}}{2}t}\end{array}\right.$,(t为参数),以原点为极点,以x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ2(4cos2θ+9sin2θ)=36.
(1)求曲线C1的普通方程和曲线C2的直角坐标方程;
(2)已知点P的坐标为(-2,-3),设曲线C1和C2相交于点M,N,求|PM|•|PN|的值.

查看答案和解析>>

同步练习册答案