精英家教网 > 高中数学 > 题目详情
设等比数列{an}的前n项和为Sn,若Sm-1=5,Sm=-11,Sm+1=21,则m=(  )
A、3B、4C、5D、6
考点:等比数列的性质
专题:等差数列与等比数列
分析:根据等比数列的通项公式和前n项和公式,建立方程组即可解得m的值.
解答: 解:在等比数列中,
∵Sm-1=5,Sm=-11,Sm+1=21,
∴am=Sm-Sm-1=-11-5=-16,am+1=Sm+1-Sm=21-(-11)=32,
则公比q=
am+1
am
=
32
-16
=-2

∵Sm=-11,
a1(1-(-2)m)
1+2
=-11
,①
am+1=a1(-2)m=32,②
两式联立解得m=5,a1=-1,
故选:C.
点评:本题主要考查等比数列的通项公式和前n项和公式的计算和应用,考查学生的计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
λsinωx+
3
2
λcosωx(λ>0,ω>0)
的部分图象如图所示,其中点为最高点,点为图象与轴的交点,在△ABC中,角A,B,C对边为a,b,c,b=c=
3
,且满足(2c-
3
a)cosB-
3
bcosA=0

(Ⅰ)求△ABC的面积;
(Ⅱ)求函数f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

设点P(x,y)满足
x-y≥-1
x+y≥1
2x-y≤2
,则z=2x+y的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某中学进行模拟考试有80个考室,每个考室30个考生,每个考试座位号按1~30号随机抽取试卷进行评分标准,每个考场抽取座位号为15号考生试卷质检,这种抽样方法是(  )
A、简单随机抽样B、系统抽样
C、分层抽样D、分组抽样

查看答案和解析>>

科目:高中数学 来源: 题型:

由200名学生的某次数学考试成绩绘制成了频率分布直方图(如图).由图可知在该次数学考试中成绩小于60分的学生数是(  )
A、600B、60C、40D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中,真命题是(  )
A、?x0∈R,ex0≤0
B、?x∈R,2x>x2
C、双曲线x2-y2=1的离心率为
2
2
D、双曲线x2-
y2
4
=1
的渐近线方程为y=±2x

查看答案和解析>>

科目:高中数学 来源: 题型:

长方体的一条对角线和同一顶点上的三条棱中的两条所成的角为60°、45°,则它和另一条棱所成的角为(  )
A、30°B、60°
C、45°D、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直三棱柱ABC-A1B1C1中,AC=BC,点D是AB的中点.
(1)求证:BC1∥平面CA1D;
(2)求证:平面CA1D⊥平面AA1B1B;
(3)若底面ABC为边长为2的正三角形,BB1=
3
,求三棱锥B1-A1DC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

若命题“?x0∈R,使得
x
2
0
+mx0+2m-3<0
”为假命题,则实数m的取值范围是
 
..

查看答案和解析>>

同步练习册答案