精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
1
2
λsinωx+
3
2
λcosωx(λ>0,ω>0)
的部分图象如图所示,其中点为最高点,点为图象与轴的交点,在△ABC中,角A,B,C对边为a,b,c,b=c=
3
,且满足(2c-
3
a)cosB-
3
bcosA=0

(Ⅰ)求△ABC的面积;
(Ⅱ)求函数f(x)的单调递增区间.
考点:由y=Asin(ωx+φ)的部分图象确定其解析式,函数y=Asin(ωx+φ)的图象变换
专题:计算题,三角函数的图像与性质
分析:(Ⅰ)由(2c-
3
a)cosB-
3
bcosA=0
,以及正弦定理可得:B的余弦函数值,求出B,A,C.然后求出函数的最大值以及函数的周期,即可求出函数的表达式,求出三角形的面积.
(Ⅱ)利用正弦函数的单调增区间求出函数的增区间即可.
解答: 解:(Ⅰ)由(2c-
3
a)cosB-
3
bcosA=0

以及正弦定理可得:2cosBsinC-
3
sinAcosB-
3
cosAsinB=0,
可得2cosB-
3
=0,
∵B是三角形内角,
∴B=
π
6

b=c=
3

∴C=
π
6
,A=
3

1
2
BC=bcos
π
6
=
3
×
3
2
,BC=3,
S△ABC=
1
2
BC•csinB
=
1
2
×
3
×3×sin
π
6
=
3
3
4

(Ⅱ)由f(x)=
1
2
λsinωx+
3
2
λcosωx=λsin(ωx+
π
3
)

由(Ⅰ)可知:T=6,A=ABsin
π
6
=
3
2

∴λ=
3
2
,ω=
T
=
π
3

∴f(x)=
3
2
sin(
π
3
x+
π
3
).
令2kπ-
π
2
π
3
x+
π
3
≤2kπ+
π
2
⇒6k-
5
2
≤x≤6k+
1
2
.k∈Z.
∴函数y=
3
2
sin(
π
3
x+
π
3
).
的单调递增区间:[6k-
5
2
,6k+
1
2
],k∈Z.
点评:本题考查由y=Asin(ωx+φ)的部分图象确定其解析式,考查函数y=Asin(ωx+φ)的图象变换及正弦函数的单调性,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

变量x,y满足约束条件
y≥-1
x-y≥2
3x+y≤14
,若使z=ax+y取得最大值的最优解有无穷多个,则实数a的取值集合是(  )
A、{-3,0}
B、{3,-1}
C、{0,1}
D、{-3,0,1}

查看答案和解析>>

科目:高中数学 来源: 题型:

下列四个命题:
(1)函数f(x)在x>0时是增函数,x<0也是增函数,所以f(x)是增函数;
(2)若函数f(x)=ax2+bx+2与x轴没有交点,则b2-8a<0且a>0;
(3)若a∈N,则-a∉N;
(4)集合B={x∈Q|
6
x
∈N
}是有限集.
其中正确命题的个数是(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的前n项和为Sn
(1)请写出数列{an}的前n项和Sn公式,并推导其公式;
(2)若an=n,数列{an}的前n项和为Sn,求
1
S1
+
1
S2
+…+
1
Sn
的和.

查看答案和解析>>

科目:高中数学 来源: 题型:

某班研究性学习小组在今年11月11日“双11购物节”期间,对[25,55)岁的人群随机抽取了1000人进行了一次是否参加“抢购商品”的调查,得到如下统计表和各年龄段人数频率分布直方图.
组数分组抢购商品
的人数
占本组
的频率
第一组[25,30)1200.6
第二组[30,35)195p
第三组[35,40)1000.5
第四组[40,45)a0.4
第五组[45,50)300.3
第六组[50,55]150.3
(Ⅰ)求统计表中a,p的值;
(Ⅱ)从年龄在[40,50)岁参加“抢购商品”的人群中,采用分层抽样法抽取9人参满意度调查,其中3人感到满意,记感到满意的3人中年龄在[40,50)岁的人数为X,求X的分布列和数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x2+4x=0},函数B={x|x2+2(a+1)x+a2-1=0}.
(1)求使A∩B=B的实数a的取值范围;
(2)使A∪B=B的实数a的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某校高一年级共有320人,为调查高一年级学生每天晚自习自主支配学习时间(指除了完成老师布置的作业后学生根据自己的需要进行学习的时间)情况,学校采用随机抽样的方法从高一学生中抽取了n名学生进行问卷调查.根据问卷得到了这n名学生每天晚自习自主支配学习时间的数据(单位:分钟),按照以下区间分为七组:①[0,10),②[10,20),③[20,30),④[30,40),⑤[40,50),⑥[50,60),⑦[60,70),得到频率分布直方图如图.已知抽取的学生中每天晚自习自主支配学习时间低于20分钟的人数是4人.
(1)求n的值;
(2)若高一全体学生平均每天晚自习自主支配学习时间少于45分钟,则学校需要减少作业量.根据以上抽样调查数据,学校是否需要减少作业量?(注:统计方法中,同一组数据常用该组区间的中点值作为代表)

查看答案和解析>>

科目:高中数学 来源: 题型:

一个四棱锥的底面为菱形,其三视图如图所示,则这个四棱锥的体积是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设等比数列{an}的前n项和为Sn,若Sm-1=5,Sm=-11,Sm+1=21,则m=(  )
A、3B、4C、5D、6

查看答案和解析>>

同步练习册答案