精英家教网 > 高中数学 > 题目详情
20.已知{an}是等差数列,{bn}是各项均为正数的等比数列,且b1=a1=1,b3=a4,b1+b2+b3=a3+a4
(1)求数列{an},{bn}的通项公式;
(2)设cn=anbn,求数列{cn}的前n项和Tn

分析 (1)设数列{an}的公差为d,{bn}的公比为q,运用等差数列和等比数列的通项公式,可得d,q的方程组,解方程可得公差和公比,即可得到所求通项公式;
(2)求得${c_n}={a_n}{b_n}=n•{2^{n-1}}$,运用数列的求和方法:错位相减法,结合等比数列的求和公式,化简整理即可得到所求和.

解答 解:(1)设数列{an}的公差为d,{bn}的公比为q,
依b1=a1=1,b3=a4,b1+b2+b3=a3+a4
得$\left\{\begin{array}{l}1+3d={q^2}\\ 1+q+{q^2}=2+5d\end{array}\right.$
解得d=1,q=2,
所以an=1+(n-1)=n,${b_n}=1×{2^{n-1}}={2^{n-1}}$;
(2)由(1)知${c_n}={a_n}{b_n}=n•{2^{n-1}}$,
则${T_n}=1•{2^0}+2•{2^1}+$3•22+…n•2n-1
2Tn=1•21+2•22+…+(n-1)•2n-1+n•2n
①-②得:$-{T_n}=1•{2^0}+1•{2^1}+1•{2^2}$+…+1•2n-1-n•2n
=$\frac{{1•({1-{2^n}})}}{1-2}-n•{2^n}$=(1-n)•2n-1.
所以${T_n}=({n-1})•{2^n}+1$.

点评 本题考查等差数列和等比数列的通项公式和求和公式的运用,考查数列的求和方法:错位相减法,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=xlnx+x(x-a)2(a∈R),若存在$x∈[{\frac{1}{2},2}]$,使得f(x)>xf'(x)成立,则实数a的取值范围是(  )
A.$({\frac{9}{4},+∞})$B.$({\frac{3}{2},+∞})$C.$({\sqrt{2},+∞})$D.(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.等比数列{an}中,a1+a4+a7=2,a3+a6+a9=18,则{an}的前9项和S9=14或26.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知等比数列{an}的前n项和为Sn,则“a1>0”是“S2017>0”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设函数f(x)=aex-xlnx,其中a∈R,e是自然对数的底数.
(Ⅰ)若f(x)是(0,+∞)上的增函数,求a的取值范围;
(Ⅱ)若$a≥\frac{2}{e^2}$,证明:f(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知$f(x)=x{e^{ax}}-\frac{a}{2}{x^2}$-x+1,a≠0
(Ⅰ)当a=1时,求f(x)的单调区间;
(Ⅱ)若?x0>1,使$f({x_0})<\frac{a}{2}$成立,求参数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数f(x)=xex+1的图象在点(0,f(0))处的切线方程是x-y+1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某中学为研究学生的身体素质与课外体育锻炼时间的关系,对该校200名高三学生的课外体育锻炼平均每天运动的时间进行调查,如表:(平均每天锻炼的时间单位:分钟)
平均每天锻炼
的时间(分钟)
[0,10)[10,20)[20,30)[30,40)[40,50)[50,60)
总人数203644504010
将学生日均课外体育运动时间在[40,60)上的学生评价为“课外体育达标”.
(1)请根据上述表格中的统计数据填写下面2×2列联表,并通过计算判断是否能在犯错误的概率不超
过0.01的前提下认为“课外体育达标”与性别有关?
课外体育不达标课外体育达标合计
20110
合计
(2)将上述调查所得到的频率视为概率.现在从该校高三学生中,抽取3名学生,记被抽取的3名学生中的“课外体育达标”学生人数为X,若每次抽取的结果是相互独立的,求X的数学期望.
独立性检验界值表:
P(K2≥k00.500.400.250.150.100.050.0250.0100.0050.001
k00.4550.7081.3232.0722.7063.8415.0246.6357.87910.828
(参考公式:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知复数z=$\frac{1+3i}{2+i}$,则|$\overrightarrow{z}$|=$\sqrt{2}$.

查看答案和解析>>

同步练习册答案