精英家教网 > 高中数学 > 题目详情
11.等比数列{an}中,a1+a4+a7=2,a3+a6+a9=18,则{an}的前9项和S9=14或26.

分析 由题意列式求得公比,然后分类求出a2+a5+a8,作和得答案.

解答 解:在等比数列{an}中,由a1+a4+a7=2,a3+a6+a9=18,得
${q}^{2}=\frac{{a}_{3}+{a}_{6}+{a}_{9}}{{a}_{1}+{a}_{4}+{a}_{7}}=\frac{18}{2}=9$,∴q=±3.
当q=-3时,a2+a5+a8=-6,S9=a1+a2+…+a9=2-6+18=14;
当q=3时,a2+a5+a8=6,S9=a1+a2+…+a9=2+6+18=26.
故答案为:14或26.

点评 本题考查等比数列的性质,考查了等比数列的前n项和,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.非常数数列{an}满足an-1+an+1=2an(n≥2),则$\frac{{a}_{5}-{a}_{4}}{{a}_{3}-{a}_{2}}$的值为(  )
A.-1B.1C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.定义“函数y=f(x)是D上的a级类周期函数”如下:函数y=f(x),x∈D,对于给定的非零常数a,总存在非零常数T,使得定义域D内的任意实数x都有af(x)=f(x+T)恒成立,此时T为f(x)的周期.若y=f(x)是[1,+∞)上的a级类周期函数,且T=1,当x∈[1,2)时,f(x)=2x(2x+1),且y=f(x)是[1,+∞)上的单调递增函数,则实数a的取值范围为(  )
A.$[{\frac{5}{6},+∞})$B.[2,+∞)C.$[{\frac{10}{3},+∞})$D.[10,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知五边形ABCDE是由直角梯形ABCD和等腰直角三角形ADE构成,如图所示,AB⊥AD,AE⊥DE,AB∥CD,且AB=2CD=2DE=4,将五边形ABCDE沿着AD折起,且使平面ABCD⊥平面ADE.
(Ⅰ)若M为DE中点,边BC上是否存在一点N,使得MN∥平面ABE?若存在,求$\frac{BN}{BC}$的值;若不存在,说明理由;
(Ⅱ)求四面体B-CDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=$\sqrt{3}$sin(2x-φ)-cos(2x-φ)(|φ|<$\frac{π}{2}$)的图象关于y轴对称,则f(x)在区间$[{-\frac{π}{6},\frac{π}{3}}]$上的最大值为(  )
A.1B.$\sqrt{3}$C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某校在高二年级开展了体育分项教学活动,将体育课分为大球(包括篮球、排球、足球)、小球(包括乒乓球、羽毛球)、田径、体操四大项(以下简称四大项,并且按照这个顺序).为体现公平,学校规定时间让学生在电脑上选课,据初步统计,在全年级980名同学中,有意申报四大项的人数之比为3:2:1:1,而实际上由于受多方面条件影响,最终确定的四大项人数必须控制在2:1:3:1,选课不成功的同学由电脑自动调剂到田径类.
(Ⅰ)随机抽取一名同学,求该同学选课成功(未被调剂)的概率;
(Ⅱ)某小组有五名同学,有意申报四大项的人数分别为2、1、1、1,记最终确定到田径类的人数为X,求X的分布列及数学期望EX.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.随着手机的发展,“微信”逐渐成为人们交流的一种形式,某机构对“使用微信交流”的态度进行调查,随机抽取了50人,他们年龄的频率分布及“使用微信交流”赞成人数如下表.
年龄(岁)[15,25)[25,35)[35,45)[45,55)[55,65)[65,75)
频数510151055
赞成人数51012721
(1)若以“年龄45岁为分界点”,由以上统计数据完成下面2×2列联表,并判断是否有99%的把握认为“使用微信交流”的态度与人的年龄有关;
年龄不低于45岁的人数年龄低于45岁的人数合计
赞成
不赞成
合计
(2)若从年龄在[55,65)的被调查人中随机选取2人进行追踪调查,求2人中至少有1人不赞成“使用微信交流”的概率.
参考数据:
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
(K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知{an}是等差数列,{bn}是各项均为正数的等比数列,且b1=a1=1,b3=a4,b1+b2+b3=a3+a4
(1)求数列{an},{bn}的通项公式;
(2)设cn=anbn,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知f(x)=$\frac{e^x}{{{x^2}+a}}({a>0})$的两个极值点分别为x1,x2(x1<x2),则a(lnx1+lnx2)的取值范围是(  )
A.$[{-\frac{1}{e},0})$B.(0,+∞)C.(0,1)D.$[{-\frac{1}{e},+∞})$

查看答案和解析>>

同步练习册答案