精英家教网 > 高中数学 > 题目详情
16.如图,三棱柱ABC-A1B1C1的体积为V1,四棱锥A1-BCC1B1的体积为V2,则$\frac{V_1}{V_2}$=$\frac{3}{2}$.

分析 设三棱柱ABC-A1B1C1的底面积为S,高为h,则V1=Sh,三棱锥A1-ABC的体积为$\frac{1}{3}$Sh,可得四棱锥A1-BCC1B1的体积为V2=$\frac{2}{3}$Sh,即可得出结论.

解答 解:设三棱柱ABC-A1B1C1的底面积为S,高为h,则V1=Sh,
三棱锥A1-ABC的体积为$\frac{1}{3}$Sh,∴四棱锥A1-BCC1B1的体积为V2=$\frac{2}{3}$Sh,
∴V2=$\frac{2}{3}$V1
∴$\frac{V_1}{V_2}$=$\frac{3}{2}$.
故答案为:$\frac{3}{2}$.

点评 本题考查三棱柱、棱锥体积的计算,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知集合M={x|-5≤x<5},N={x|2x<16},则M∩N=(  )
A.[-5,3)B.[-5,-4)C.[-5,4)D.(-4,-3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在四棱锥P-ABCD中,已知PA⊥平面ABCD,AD∥BC,AD⊥AB,PA=AD=2BC=2AB=2.
(Ⅰ)求证:平面PAC⊥平面PCD;
(Ⅱ)若E是PD的中点,求平面BCE将四棱锥P-ABCD分成的上下两部分体积V1、V2之比.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.关于平面向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$,有下列三个命题:
①若$\overrightarrow{a}$•$\overrightarrow{b}$=$\overrightarrow{a}$•$\overrightarrow{c}$,则$\overrightarrow{b}$=$\overrightarrow{c}$;
②若|$\overrightarrow{a}$•$\overrightarrow{b}$|=|$\overrightarrow{a}$|•|$\overrightarrow{b}$|,则$\overrightarrow{a}$∥$\overrightarrow{b}$;
③$\overrightarrow{a}$=(-1,1)在$\overrightarrow{b}$=(3,4)方向上的投影为$\frac{1}{5}$;
④非零向量$\overrightarrow{a}$和$\overrightarrow{b}$满足|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=|$\overrightarrow{a}$-$\overrightarrow{b}$|,则$\overrightarrow{a}$与$\overrightarrow{a}$+$\overrightarrow{b}$的夹角为60°.
其中真命题的序号为②③(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知k∈R,$\overrightarrow{AB}$=(k,1),$\overrightarrow{AC}$=(2,4),若|${\overrightarrow{AB}}$|<$\sqrt{10}$,则△ABC是钝角三角形的概率是(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=$\frac{1}{3}$|x|3-ax2+(6-a)|x|+b(a,b∈R),若f(x)有六个不同的单调区间,则实数a的取值范围为(  )
A.a<-2,或a>0B.0<a<1C.1<a<3D.2<a<6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=(x+m)lnx在点(1,f(1))处的切线与直线y=2x-3平行.
(1)求f(x)在区间[e,+∞)上的最小值;
(2)若对任意x∈(0,1),都有$\frac{1}{a}$f(x)+2-2x<0成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.化简求值:
(1)sin(-1320°)cos1110°+cos(-1020°)sin750°
(2)$\frac{si{n}^{2}(α-2π)cos(3π+α)}{cos(\frac{3π}{2}-α)cos(α-π)sin(-α-3π)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,直四棱柱ABCD-A1B1C1D1的棱长均为2,∠BAD=$\frac{π}{3}$,M为BB1的中点,Ol为上底面对角线的交点.
(Ⅰ)求证:O1M⊥平面ACM1
(Ⅱ)求Cl到平面ACM的距离.

查看答案和解析>>

同步练习册答案