精英家教网 > 高中数学 > 题目详情
10.若m,n是两条不同的直线,m⊥平面α,则“m⊥n”是“n∥α”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

分析 “m⊥n”推不出“n∥α”,“n∥α”⇒“m⊥n”.

解答 解:∵m,n是两条不同的直线,m⊥平面α,
∴“m⊥n”推不出“n∥α”,
“n∥α”⇒“m⊥n”,
∴“m⊥n”是“n∥α”的必要不充分条件.
故选:B.

点评 本题考查命真假的判断,是基础题,解题时要认真审题,注意空间中线线、线面、面面间的位置关系的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知loga2=m,loga3=n,则a2m+n=12,用m,n表示log46为$\frac{m+n}{2m}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知f(x)=x3-x2-x+3,x∈[-1,2],f(x)-m<0恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.m为何实数时,复数z=(2+i)m2-3(i+1)m-2(1-i)是:
(1)虚数;
(2)若z<0,求m.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知定义在R上的奇函数f(x)的图象为一条连续不断的曲线,f(1+x)=f(1-x),f(1)=a,且当0<x<1时,f(x)的导函数f′(x)满足:f′(x)<f(x),则f(x)在[2015,2016]上的最大值为(  )
A.aB.0C.-aD.2016

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知x,y为正实数,且x+2y=1,则$\sqrt{xy}$的最大值是$\frac{\sqrt{2}}{4}$,$\frac{2x+y}{xy}$的最小值是9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.求函数f(x)=sin2x-x,x∈[-$\frac{π}{2}$,$\frac{π}{2}$]的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知某生产厂家的年利润y(单位:万元)与年产量x(单位:万件)的函数关系式为y=-$\frac{1}{3}$x3+4x+$\frac{71}{3}$,则使该生产厂家获取最大年利润的年产量为(  )
A.3万件B.1万件C.2万件D.7万件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知x>0,y>0,且4x+$\frac{1}{x}$+y+$\frac{9}{y}$=26,则函数F(x,y)=4x+y的最大值与最小值的差为(  )
A.24B.25C.26D.27

查看答案和解析>>

同步练习册答案