精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
x2-x+1,x≤1
2x+a,x>1
且f(f(-1))=7.
(1)求实数a的值;
(2)求函数f(x)在区间[0,+∞)上的最小值.
考点:函数的最值及其几何意义,函数的值,分段函数的应用
专题:函数的性质及应用
分析:(1)先求(1)f(-1)=(-1)2-(-1)+1=3,再代入f(f(-1))得f(f(-1))=f(3)=23+a=7,即可得到a=-1;
(2)由(1)知,a=-1,故f(x)=
x2-x+1,x≤1
2x-1,x>1
,在当x≤1时与当x>1时,分别研究函数的单调性,求出最小值.
解答: 解:(1)f(-1)=(-1)2-(-1)+1=3,∴f(f(-1))=f(3)=23+a=7,
∴a=-1
(2)由(1)知,a=-1,故f(x)=
x2-x+1,x≤1
2x-1,x>1

当x≤1时,f(x)=x2-x+1=(x-
1
2
2+
3
4
3
4
,即x∈[0,1]时f(x)先减后增;
当x>1时,f(x)=2x-1>21-1=1,为增函数,
∴函数f(x)在区间[0,+∞)上的最小值应在x=
1
2
时取,
故当x=
1
2
时,f(x)min=f(
1
2
)=
3
4
点评:本题主要考查分段函数的有关知识,解决问题的关键是在分段函数的每一段上考虑函数的表达式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设a>b>0,a+b=1且x=ba,y=ab,z=log 
1
b
a则x,y,z之间的大小关系是(  )
A、y<x<z
B、y<z<x
C、z<y<x
D、z<x<y

查看答案和解析>>

科目:高中数学 来源: 题型:

若定义在R上的偶函数f(x)满足f(x+1)=-f(x),并且当x∈[0,1]时,f(x)=2x-1,则函数y=f(x)-log3|x|的零点个数是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xoy中,设曲线C1在矩阵A=
10
0
1
2
对应的变换作用下得到曲线C2
x2
4
+y2=1
,求曲线C1的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的两个顶点A、B∈平面α,下面四项:①△ABC的内心;②△ABC的外心;③△ABC的垂心;④△ABC的重心.其中因其在α内可判定C在α内的是(  )
A、②③B、②④C、①③D、①④

查看答案和解析>>

科目:高中数学 来源: 题型:

在棱长为2的正方体ABCD-A1B1C1D1中,E为棱AB的中点,点P在平面A1B1C1D1内,若D1P⊥平面PCE,试求线段D1P的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知动点M到定点(1,0)的距离比M到定直线x=-2的距离小1.
(1)求证:M点轨迹为抛物线,并求出其轨迹方程;
(2)大家知道,过圆上任意一点P,任意作互相垂直的弦PA、PB,则弦AB必过圆心(定点).受此启发,研究下面问题:
①过(1)中的抛物线的顶点O任意作互相垂直的弦OA、OB,问:弦AB是否经过一个定点?若经过,请求出定点坐标,否则说明理由;
②研究:对于抛物线y2=2px(p>0)上顶点以外的定点是否也有这样的性质?请提出一个一般的结论,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=2x3-6x的“临界点”是(  )
A、1B、-1C、-1和1D、0

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△OAB中,P为线段AB上的一点,
OP
=x
OA
+y
OB
,且
BP
=3
PA
,则(  )
A、x=
2
3
,y=
1
3
B、x=
1
3
,y=
2
3
C、x=
1
4
,y=
3
4
D、x=
3
4
,y=
1
4

查看答案和解析>>

同步练习册答案