精英家教网 > 高中数学 > 题目详情
若定义在R上的偶函数f(x)满足f(x+1)=-f(x),并且当x∈[0,1]时,f(x)=2x-1,则函数y=f(x)-log3|x|的零点个数是
 
考点:函数零点的判定定理,函数奇偶性的性质
专题:
分析:在同一个坐标系中画出函数y=f(x)的图象与函数y=log3|x|的图象,这两个函数图象的交点个数即为所求.
解答: 解:∵定义在R上的偶函数f(x)满足f(x+1)=-f(x),
∴满足f(x+2)=f(x),
故函数的周期为2.
当x∈[0,1]时,f(x)=2x-1,
故当x∈[-1,0]时,f(x)=-2x-1.
函数y=f(x)-log3|x|的零点的个数等于函数y=f(x)的图象与函数y=log3|x|的图象的交点个数.
在同一个坐标系中画出函数y=f(x)的图象与函数y=log3|x|的图象,如图所示:

显然函数y=f(x)的图象与函数y=log3|x|的图象有4个交点,
故答案为:4.
点评:本题考查了根的存在性及根的个数判断,以及函数与方程的思想,解答关键是运用数形结合的思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a>0,b>0,ab-(a+b)=1,求a+b的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在四棱锥P-ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q为AD的中点,M是棱PC上的点,PA=PD=2,BC=
1
2
AD=1,CD=
3

(Ⅰ)求证:平面MQB⊥平面PAD;
(Ⅱ)若二面角M-BQ-C大小为60°,求QM的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

平面直角坐标系xOy中,椭圆Σ:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
6
3
,焦点为F1、F2
直线l:x+y-2=0经过焦点F2,并与Σ相交于A、B两点.
(1)求
 
 
的方程;
(2)在
 
 
上是否存在C、D两点,满足CD∥AB,F1C=F1D?若存在,求直线CD的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的函数,f(1)=1,且?x1,x2∈R,总有f(x1+x2)=f(x1)+f(x2)+1恒成立.
(Ⅰ)记g(x)=f(x)+1,求证:g(x)是奇函数;
(Ⅱ)对?n∈N*,有an=
1
f(n)
,bn=f(
1
2n+1
)+1,记cn=
bn
an
,求{cn}的前n项和Sn
(Ⅲ)求F(n)=an+1+an+2+…+a2n(n≥2,n∈N)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在如图所示的几何体中,四边形ABCD和ABEF均为矩形,M为AF的中点,BN⊥CE与N.
(1)求证:CF∥平面MBD;
(2)求证:平面EFC⊥平面BDN.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C中心在原点O,对称轴为坐标轴,焦点F1,F2在x轴上,离心率e=
1
2
,且经过点A(1,
3
2
).
(Ⅰ)椭圆C的标准方程.
(Ⅱ)已知P、Q是椭圆C上的两点,若OP⊥OQ,求证:
1
|OP|2
+
1
|OQ|2
为定值.
(Ⅲ)当
1
|OP|2
+
1
|OQ|2
为(Ⅱ)所求定值时,试探究OP⊥OQ是否成立?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x2-x+1,x≤1
2x+a,x>1
且f(f(-1))=7.
(1)求实数a的值;
(2)求函数f(x)在区间[0,+∞)上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在正方体ABCD-A1B1C1D1中,动点P在底面ABCD内,且P到棱AD的距离与到面对角线BC1的距离相等,则点P的轨迹是(  )
A、线段
B、椭圆的一部分
C、双曲线的一部分
D、抛物线的一部分

查看答案和解析>>

同步练习册答案