精英家教网 > 高中数学 > 题目详情
在如图所示的几何体中,四边形ABCD和ABEF均为矩形,M为AF的中点,BN⊥CE与N.
(1)求证:CF∥平面MBD;
(2)求证:平面EFC⊥平面BDN.
考点:平面与平面垂直的判定,直线与平面平行的判定
专题:空间位置关系与距离
分析:(Ⅰ)连接AC交BD于点O,连接OM,由三角形中位线定理得CF∥OM,由此能证明CF∥平面MBD.
(Ⅱ)由四边形ABCD和ABEF均为矩形,得AB⊥平面BCE,从而BN⊥面EFC,由此能证明平面EFC⊥平面BDN.
解答: 证明:(Ⅰ)连接AC交BD于点O,连接OM.
因为四边形ABCD是正方形,所以O为AC的中点.
因为M为AF的中点,所以CF∥OM,
又OM?平面MBD,CF?平面MBD,
所以CF∥平面MBD.(6分)
(Ⅱ)因为四边形ABCD和ABEF均为矩形,
所以AB⊥平面BCE,
所以AB⊥BN,又AB∥EF,所以BN⊥EF,
又BN⊥EC(已知),
所以BN⊥面EFC,
又BN?平面BDN,所以平面EFC⊥平面BDN.(12分)
点评:本题考查线面平行的证明,考查面面垂直的证明,考查方程思想、等价转化思想等数学思想方法和学生的空间想象能力、逻辑推理能力和运算求解能力,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

3a
-
3b
3a-b
成立的充要条件是(  )
A、ab(b-a)>0
B、ab>0且a>b
C、ab<0且a<b
D、ab(b-a)<0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知过定点P(2,0)的直线l与曲线y=
2-x2
相交于A,B两点,O为坐标原点,当S△AOB=1时,直线l的倾斜角为(  )
A、150°B、135°
C、120°D、不存在

查看答案和解析>>

科目:高中数学 来源: 题型:

根据《中华人民共和国道路交通安全法》规定:车辆驾驶员血液酒精浓度在20~80mg/100mL(不含80)之间,属于酒后驾车;血液酒精浓度在80mg/100mL(含80)以上时,属于醉酒驾车,某市上个月抽查了酒后驾车和醉酒驾车工100人,下图是对这100人血液中酒精含量进行检测所得结果的频率分布直方图.
(Ⅰ)求血液酒精浓度在80~90mg/100mL的人数;
(Ⅱ)已知醉酒驾车的人中,未成年人居然有2人,若从醉酒驾车的人种随机选出2人,求未成年的人数恰好有1人的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

若定义在R上的偶函数f(x)满足f(x+1)=-f(x),并且当x∈[0,1]时,f(x)=2x-1,则函数y=f(x)-log3|x|的零点个数是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知方向向量为
v
=(1,
3
)的直线l过点(0,-2
3
)和椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的右焦点,且椭圆的离心率为
1
2

(1)求椭圆C的方程;
(2)若过点P(-8,0)的直线与椭圆相交于不同两点A、B,F为椭圆C的左焦点,求三角形ABF面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xoy中,设曲线C1在矩阵A=
10
0
1
2
对应的变换作用下得到曲线C2
x2
4
+y2=1
,求曲线C1的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

在棱长为2的正方体ABCD-A1B1C1D1中,E为棱AB的中点,点P在平面A1B1C1D1内,若D1P⊥平面PCE,试求线段D1P的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PA⊥平面ABCD,PA=AB=AD=2,四边形AB⊥CD,BC∥AD且BC=4,点M为PC中点.
(1)求证:平面ADM⊥平面PBC;
(2)求点P到平面ADM的距离.

查看答案和解析>>

同步练习册答案