精英家教网 > 高中数学 > 题目详情
已知过定点P(2,0)的直线l与曲线y=
2-x2
相交于A,B两点,O为坐标原点,当S△AOB=1时,直线l的倾斜角为(  )
A、150°B、135°
C、120°D、不存在
考点:直线与圆锥曲线的关系
专题:圆锥曲线的定义、性质与方程
分析:判断曲线的形状,利用三角形的面积求出∠AOB,推出原点到直线的距离,建立方程求出直线的斜率,然后求解倾斜角.
解答: 解:曲线y=
2-x2
,表示的图形是以原点为圆心半径为
2
的上半个圆,
过定点P(2,0)的直线l设为:y=k(x-2).(k<0)即kx-y-2k=0.
S△AOB=1.
1
2
×
2
×
2
sin∠AOB=1

可得∠AOB=90°,
三角形AOB是等腰直角三角形,原点到直线的距离为:1.
∴1=
|2k|
1+k2

解得k=±
3
3
,∵k<0.∴k=-
3
3

∴直线的倾斜角为150°.
故选:A.
点评:本题考查直线与曲线的位置关系的应用,点到直线的距离公式,考查转化思想以及计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

求二次函数y=x2+4的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

化简:
1-2sin20°cos20°
sin20°-cos20°

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=
1
2
,an+1=sin(
π
2
an),n∈N*
(Ⅰ)求证:0<an<an+1<1;
(Ⅱ)求证:sin[
π
4
(1-an)]<
1
2

(Ⅲ)求证:an≥1-
1
2
π
4
n-1

查看答案和解析>>

科目:高中数学 来源: 题型:

在四棱锥P-ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q为AD的中点,M是棱PC上的点,PA=PD=2,BC=
1
2
AD=1,CD=
3

(Ⅰ)求证:平面MQB⊥平面PAD;
(Ⅱ)若二面角M-BQ-C大小为60°,求QM的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0,c为椭圆的半焦距)的左焦点为F,右顶点为A,抛物线y2=
15
8
(a+c)x与椭圆交于B,C两点,若四边形ABFC是菱形,则椭圆的离心率是(  )
A、
15
8
B、
4
15
C、
2
3
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

平面直角坐标系xOy中,椭圆Σ:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
6
3
,焦点为F1、F2
直线l:x+y-2=0经过焦点F2,并与Σ相交于A、B两点.
(1)求
 
 
的方程;
(2)在
 
 
上是否存在C、D两点,满足CD∥AB,F1C=F1D?若存在,求直线CD的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在如图所示的几何体中,四边形ABCD和ABEF均为矩形,M为AF的中点,BN⊥CE与N.
(1)求证:CF∥平面MBD;
(2)求证:平面EFC⊥平面BDN.

查看答案和解析>>

科目:高中数学 来源: 题型:

盒内有大小相同的10个球,其中3个红色球,3个白色球,4个黑色球.
(1)现从该盒内任取3个球,规定取出1个红色球得1分,取出1个白色球得0分,取出1个黑色球得-1分,设三个球得分之和ξ,求ξ的分布列与数学期望;
(2)甲、乙两人做摸球游戏,设甲从该盒内摸到黑球的概率是
1
2
,已从该盒内摸到黑球的概率是
2
3
,甲,乙两人各摸球3次,求两人共摸中2次黑球的概率.

查看答案和解析>>

同步练习册答案