精英家教网 > 高中数学 > 题目详情
从0,1,2,…,9这十个数字中,任取两个不同的数字相加,其和为偶数的不同取法有多少种?(  )
A、20B、18C、16D、14
考点:计数原理的应用
专题:排列组合
分析:分别求得取出的这2个数都是偶数;取出的这2个数都是奇数,相加,即得所求
解答: 解:若取出的这2个数都是偶数,方法有
C
2
5
=10种;
若取出的这2个数都是奇数,方法有
C
2
5
=10种;
综上,所有的满足条件的取法共有10+10=20种,
故选:A.
点评:本题主要考查分步计数原理的应用,体现了分类讨论的数学思想,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a>0,a≠1,M>0,N>0,那么下列各式中错误的是(  )
A、logα(M+N)=logαM+logαN
B、logα
M
N
=logαM-logαN
C、logαMn=nlogαM
D、logαMN=logαM+logαN

查看答案和解析>>

科目:高中数学 来源: 题型:

已知m,n是不重合的直线,α,β是不重合的平面,有下列命题:①若m?α,n∥α,则m∥n;②若m∥α,m∥β,则α∥β;③若α∩β=n,m∥n,则 m∥α,m∥β;其中正确的命题的个数是(  )
A、0个B、1个C、2个D、3个

查看答案和解析>>

科目:高中数学 来源: 题型:

在演绎推理“因为平行四边形的对角线互相平分,而正方形是平行四边形,所以正方形的对角线互相平分.”中“正方形是平行四边形”是“三段论”的(  )
A、大前提B、小前提
C、结论D、其它

查看答案和解析>>

科目:高中数学 来源: 题型:

化简cos(α+β)cosα+sin(α+β)sinα得(  )
A、cosα
B、cosβ
C、cos(2α+β)
D、sin(2α+β)

查看答案和解析>>

科目:高中数学 来源: 题型:

F1,F2分别是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的左右焦点,以O为圆心,OF1为半径的圆与双曲线在第一象限的交点为P,若三角形PF1F2的面积为3a2,则双曲线离心率为(  )
A、
2
B、
3
C、
6
2
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

命题“平行四边形的对角线相等且互相平分”是(  )形式命题.
A、p∨qB、p∧q
C、¬pD、以上都不是

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线x2-
y2
3
=1上一点P到左焦点的距离为4,则点P到右准线的距离为(  )
A、1B、2C、3D、1或3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}是公差为d的等差数列,其前n项和为Sn,{bn}是公比为q的等比数列,且a1=b1=3,a3=b2-2,S4=b3-3.
(1)求数列{an},{bn}的通项公式;
(2)记cn=anbn,求数列{cn}的前n项和Tn

查看答案和解析>>

同步练习册答案