精英家教网 > 高中数学 > 题目详情
20.若sinα=$\frac{\sqrt{3}}{3}$,则cos2α=(  )
A.$-\frac{2}{3}$B.$-\frac{1}{3}$C.$\frac{1}{3}$D.$\frac{2}{3}$

分析 直接利用二倍角的余弦公式的变形,求得cos2α的值.

解答 解:∵sinα=$\frac{\sqrt{3}}{3}$,则cos2α=1-2sin2α=1-2×$\frac{1}{3}$=$\frac{1}{3}$,
故选:C.

点评 本题主要考查二倍角的余弦公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.如图,在四棱锥P-ABCD中,底面ABCD是菱形,$∠DAB=\frac{π}{3}$,PD⊥平面ABCD,PD=AD=3,PM=2MD,AN=2NB,E是AB中点.
(Ⅰ)求证:直线AM∥平面PNC;
(Ⅱ)求证:直线CD⊥平面PDE;
(III)在AB上是否存在一点G,使得二面角G-PD-A的大小为$\frac{π}{3}$,若存在,确定G的位置,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若全集U={1,2,3,4,5},且∁UA={2,3},则集合A={1,4,5}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若$z=\frac{{{{(1+i)}^4}{{(-1-\sqrt{3}i)}^7}}}{{{{(1-i)}^{12}}}}$,则|z|=8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数$y=sin\frac{1}{2}x$的最小正周期为(  )
A.$\frac{π}{2}$B.πC.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知$\overrightarrow{{e}_{1}}$、$\overrightarrow{{e}_{2}}$为同一平面内两个不共线的向量,且$\overrightarrow{AB}$=2$\overrightarrow{{e}_{1}}$+k$\overrightarrow{{e}_{2}}$,$\overrightarrow{CB}$=$\overrightarrow{{e}_{1}}$+3$\overrightarrow{{e}_{2}}$,$\overrightarrow{CD}$=2$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$,若A、B、D三点共线,则k=-8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.三个数a=0.412,b=log20.41,c=20.41之间的大小关系为(  )
A.a<c<bB.a<b<cC.b<c<aD.b<a<c

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知四面体P-ABC的四个顶点都在球O的球面上,若PB⊥平面ABC,AB⊥AC,且AC=2$\sqrt{2}$,PB=AB=2,则球O的表面积为16π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设复数z满足z•i=2+3i,则z=3-2i.

查看答案和解析>>

同步练习册答案