精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线C)的焦点为F,过F且斜率为1的直线与C交于AB两点,.

1)求C的方程;

2)过点的直线lC于点MN,点Q的中点,轴交C于点R,且,证明:动点T在定直线上.

【答案】1;(2)见解析.

【解析】

1)联立直线方程与抛物线方程得到关于x的一元二次方程,利用韦达定理逐步求出,再利用弦长公式即可求得p,从而得出抛物线方程;(2)设l方程为,联立直线方程与抛物线方程得到关于x的二次方程,利用韦达定理用k表示出,即可逐步求出点Q、点R的坐标,由可求出T点的坐标,消去k即可求得点T所在定直线.

1)设

因为,所以过F且斜率为1的直线方程为

代入,得

所以

所以,解得

所以C方程为.

2)证明:因为直线l斜率k存在,设l方程为

联立

y

所以

所以

由点R在曲线E上且轴,,得R的中点,

所以T

因为,所以T在定直线.

解法二:(1)同解法一

2)设

,作差得

所以

,因为点Q的横坐标

所以直线的斜率,又因为

所以,所以

因为点R的中点,所以

因为点RC上,代入得,即

所以T在定直线.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知椭圆E的离心率是,短轴长为2,若点AB分别是椭圆E的左右顶点,动点,直线交椭圆EP.

1)求椭圆E的方程

2)①求证:是定值;

②设的面积为,四边形的面积为,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数的定义域为,并满足以下条件:对任意,有对任意,有.

)求的值;

)求证:上是单调增函数;

)若,且,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

1)求的单调区间;

2)若在其公共点处切线相同,求实数a的值;

3)记,若函数存在两个零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若,求的最值;

2)若当时,,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,直线l的参数方程(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为:

直线l的参数方程化为极坐标方程;

求直线l与曲线C交点的极坐标其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校的一个社会实践调查小组,在对该校学生的良好“用眼习惯”的调查中,随机发放了120分问卷.对收回的100份有效问卷进行统计,得到如下列联表:

做不到科学用眼

能做到科学用眼

合计

45

10

55

30

15

45

合计

75

25

100

(1)现按女生是否能做到科学用眼进行分层,从45份女生问卷中抽取了6份问卷,从这6份问卷中再随机抽取3份,并记其中能做到科学用眼的问卷的份数,试求随机变量的分布列和数学期望;

(2)若在犯错误的概率不超过的前提下认为良好“用眼习惯”与性别有关,那么根据临界值表,最精确的的值应为多少?请说明理由.

附:独立性检验统计量,其中.

独立性检验临界值表:

0.25

0.15

0.10

0.05

0.025

1.323

2.072

2.706

3.840

5.024

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知8支球队中有3支弱队,以抽签方式将这8支球队分为AB两组,每组4支.求:(1AB两组中有一组恰有两支弱队的概率;

2A组中至少有两支弱队的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知0m2,动点M到两定点F1(﹣m,0),F2m,0)的距离之和为4,设点M的轨迹为曲线C,若曲线C过点.

1)求m的值以及曲线C的方程;

2)过定点且斜率不为零的直线l与曲线C交于A,B两点.证明:以AB为直径的圆过曲线C的右顶点.

查看答案和解析>>

同步练习册答案