精英家教网 > 高中数学 > 题目详情
8.设数列{an}是等差数列,若a2+a4+a6=12,则a1+a2+…+a7等于(  )
A.14B.21C.28D.35

分析 利用等差数列的通项公式性质及其求和公式即可得出.

解答 解:∵数列{an}是等差数列,a2+a4+a6=12,
∴3a4=12,解得a4=4.
则a1+a2+…+a7=7a4=28.
故选:C.

点评 本题考查了等差数列的通项公式及其求和公式与性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.在正项数列{an}中,已知a1=1,且满足an+1=2an$-\frac{1}{{a}_{n}+1}$(n∈N*)
(Ⅰ)求a2,a3
(Ⅱ)证明.an≥$(\frac{3}{2})^{n-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.集合{a,b,c}共有8个子集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}的前n项和为Sn,向量$\overrightarrow{a}$=(Sn,1),$\overrightarrow{b}$=(2n-1,$\frac{1}{2}$),满足条件$\overrightarrow{a}$∥$\overrightarrow{b}$
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设函数f(x)=($\frac{1}{2}$)x,数列{bn}满足条件b1=2,f(bn+1)=$\frac{1}{f(-3-{b}_{n})}$,(n∈N*)
(i)求数列{bn}的通项公式;
(ii)设cn=$\frac{{b}_{n}}{{a}_{n}}$,数列{cn}的前n项和Tn,求证1≤Tn<5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知{an}为等比数列,且${a_1}{a_{13}}=\frac{π}{6}$,则tan(a2a12)的值为(  )
A.$\frac{{\sqrt{3}}}{3}$B.-$\sqrt{3}$C.$±\sqrt{3}$D.$-\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.若关于x的不等式ax2+bx-1>0的解集为$(\frac{1}{3},\frac{1}{2})$.
(1)求a,b;
(2)求两平行线l1:3x+4y+a=0,l2:3x+4y+b=0之间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知圆M:(x-1)2+y2=$\frac{3}{8}$,椭圆C:$\frac{{x}^{2}}{3}$+y2=1,若直线l与椭圆交于A,B两点,与圆M相切于点P,且P为AB的中点,则这样的直线l有(  )
A.2条B.3条C.4条D.6条

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.不等式|x-1|+|x+3|≥6的解集是(-∞,-4]∪[2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.${∫}_{-1}^{1}$(3x2+2x+1)dx=4.

查看答案和解析>>

同步练习册答案