精英家教网 > 高中数学 > 题目详情
17.化简:(cos2α+sin2α)3-cos6α-sin6α.

分析 直接利用立方和公式展开,化简求解即可.

解答 解:(cos2α+sin2α)3-cos6α-sin6α
=cos6α+sin6α+3cos4αsin2α+3cos2αsin4α-cos6α-sin6α
=3cos4αsin2α+3cos2αsin4α
=3cos2αsin2α(cos2α+sin2α)
=$\frac{3}{4}$sin22α.

点评 本题考查三角函数的化简求值,同角三角函数的基本关系式以及二倍角公式的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.如图,正方体ABCD-A1B1C1D1的棱长为1,P为BC的中点,Q为线段CC1上的动点,过点A,P,Q的平面截该正方体所得的截面记为S.则下列命题正确的是①②④⑤(写出所有正确命题的编号).
①当0<CQ<$\frac{1}{2}$时,S为四边形;
②当CQ=$\frac{1}{2}$时,S为等腰梯形;
③当$\frac{3}{4}$<CQ<1时,S为六边形;
④当CQ=$\frac{3}{4}$时,S与C1D1的交点R满足C1R=$\frac{1}{3}$;
⑤当CQ=1时,S的面积为$\frac{\sqrt{6}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=a(x+1)ln(x+1)图象上的点(e2-1,f(e2-1))处的切线与直线x+3y+1=0垂直(e=2.71828).
(Ⅰ)求f(x)的单调区间;
(Ⅱ)求函数y=2f(x-1)与y=x3-mx(m>1)的图象在区间[$\frac{1}{e}$,e]上交点的个数;
(Ⅲ)证明:当m>n>0时,(1+emen<(1+enem

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.一艘船以8km/h的速度向垂直于对岸的方向行驶,同时河水的流速为2km/h,求船实际航行的速度的大小与方向(精确到1°)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若三棱锥P-ABC的三条侧棱PA,PB,PC两两互相垂直且长都相等,其外接球半径为2,则三棱锥的表面积为$8+\frac{{8\sqrt{3}}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数g(x)=2aln(x+1)+x2-2x
(1)当a≠0时,讨论函数g(x)的单调性:
(2)若函数f(x)的图象上存在不同两点A,B,设线段AB的中点为(x0,y0),使得f(x)在点Q(x0,f(x0))处的切线l与直线AB平行或重合,则说函数f(x)是“中值平衡函数”,切线l叫做函数f(x)的“中值平衡切线”.试判断函数g(x)是否是“中值平衡函数”?若是,判断函数g(x)的“中值平衡切线”的条数;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知△ABC内角A、B、C的对边分别为a、b、c,且sinA+sinB=$\sqrt{2}$sinC,周长a+b+c=$\sqrt{2}$+1,△ABC的面积为$\frac{1}{6}$sinC.
(1)求边c的长;
(2)求ab的值;
(3)求角C的度数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图,E、F分别为棱长为1的正方体的棱A1B1、B1C1的中点,点G、H分别为面对角线AC和棱DD1上的动点(包括端点),则四面体EFGH的体积(  )
A.既存在最大值,也存在最小值B.为定值
C.只存在最小值D.只存在最大值

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若1+2i是方程x2+ax+b=0(a,b∈R)的1个根,则a=-2,b=5,方程的另一个根是1-2i.

查看答案和解析>>

同步练习册答案