精英家教网 > 高中数学 > 题目详情
20.($\sqrt{x}$+$\frac{2}{\root{3}{x}}$)4展开式中所有项的系数和为(  )
A.16B.32C.64D.81

分析 令x=1,即可得出($\sqrt{x}$+$\frac{2}{\root{3}{x}}$)4展开式中所有项的系数和.

解答 解:令x=1,则($\sqrt{x}$+$\frac{2}{\root{3}{x}}$)4展开式中所有项的系数和=(1+2)4=81.
故选:D.

点评 本题考查了二项式定理的应用,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知向量$\overrightarrow a$=(1,2),$\overrightarrow b$=(x,4),若$\overrightarrow a$∥$\overrightarrow b$,则实数x的值为(  )
A.8B.2C.-2D.-8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在半径为$\sqrt{3}$,圆心角为60°的扇形的弧上任取一点P,作扇形的内接矩形PNMQ,使点Q在OA上,点N,M在OB上,设矩形PNMQ的面积为y,∠POB=θ.
(Ⅰ)将y表示成θ的函数关系式,并写出定义域;
(Ⅱ)求矩形PNMQ的面积取得最大值时$\overrightarrow{OP}$•$\overrightarrow{ON}$的值;
(Ⅲ)求矩形PNMQ的面积y≥$\frac{\sqrt{6}-\sqrt{3}}{2}$的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知α、β都是锐角,tanα=2,tanβ=3,那么α+β等于(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知a,b,c分别是△ABC的内角A,B,C的对边,sin2B=2sinAsinC.
(1)若a=b,求cosB的值;
(2)若B=60°,△ABC的面积为4$\sqrt{3}$,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.4张卡片上分别写有数字1,1,2,2,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字不相等的概率为(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.用a代表红球,b代表蓝球,c代表黑球,由加法原理及乘法原理,从1个红球和1个蓝球中取出若干个球的所有取法可由(1+a)•(1+b)的展开式1+a+b+ab表示出来,如:“1”表示一个球都不取、“a”表示取出一个红球,而“ab”表示把红球和蓝球都取出来,以此类推,下列各式中,其展开式可用来表示从3个无区别的红球、3个无区别的蓝球、2个有区别的黑球中取出若干个球,且所有蓝球都取出或都不取出的所有取法的是①
①(1+a+a2+a3)(1+b3)(1+c)2
②(1+a3)(1+b+b2+b3)(1+c)2
③(1+a)3(1+b+b2+b3)(1+c2
④(1+a3)(1+b)3(1+c+c2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知数列{an}中,a1=1,an+1=$\frac{a_n}{{1+{a_n}}}$(n=1,2,3,…)计算该数列的前几项,猜想它的通项公式是(  )
A.${a_n}=\frac{1}{n}$B.an=nC.${a_n}={n^2}$D.${a_n}=\frac{1}{2n-1}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知过点M($\frac{p}{2}$,0)的直线l与抛物线y2=2px(p>0)交于A,B两点,O为坐标原点,且满足$\overrightarrow{OA}$•$\overrightarrow{OB}$=-3,则当|AM|+4|BM|最小时,|AB|=$\frac{9}{2}$.

查看答案和解析>>

同步练习册答案