精英家教网 > 高中数学 > 题目详情
10.已知在△ABC中,a,b,c分别为角A,B,C所对的边,且cosC=$\frac{2}{3}$,$\overrightarrow{AC}$•$\overrightarrow{CB}$=-2,且a+b=$\sqrt{26}$,则c边长为(  )
A.$\sqrt{5}$B.4C.$\sqrt{13}$D.$\sqrt{17}$

分析 利用平面向量的数量积运算法则化简$\overrightarrow{AC}$•$\overrightarrow{CB}$=-2,将cosC的值代入求出ab的值,利用余弦定理得到c2=a2+b2-2abcosC,利用完全平方公式变形后,将a+b,ab及cosC的值代入,开方即可求出c的值

解答 解:∵cosC=$\frac{2}{3}$,$\overrightarrow{AC}$•$\overrightarrow{CB}$=-2,
∴$\overrightarrow{AC}$•$\overrightarrow{CB}$=abcos(π-C)=-abcosC=-$\frac{2}{3}$ab=-2,
解得:ab=3,又a+b=$\sqrt{26}$,
∴由余弦定理得:c2=a2+b2-2abcosC=(a+b)2-2ab-2abcosC=26-6-4=16,
则c=4;
故选B.

点评 此题考查了余弦定理,平面向量的数量积运算法则,以及完全平方公式的运用,熟练掌握公式及定理是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.执行如图所示的程序框图,若输入x=2,则输出y的值为(  )
A.23B.11C.5D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=ax-lnx-1(a∈R).
(Ⅰ)讨论函数f(x)在定义域内的极值点的个数;
(Ⅱ)若函数f(x)在x=1处取得极值,对任意的x∈(0,+∞),f(x)≥bx-2恒成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,三棱柱ABC-A1B1C1中,侧面BCC1B1是矩形,截面A1BC是等边三角形.
(Ⅰ)求证:AB=AC;
(Ⅱ)若AB⊥AC,三棱柱的高为1,求C1点到截面A1BC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若非零向量$\overrightarrow a,\overrightarrow b$满足($\overrightarrow{a}$-4$\overrightarrow{b}$)⊥$\overline{a}$,($\overrightarrow{b}$-$\overrightarrow{a}$)⊥$\overrightarrow{b}$,则$\overrightarrow a$与$\overrightarrow b$的夹角是(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{2}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知f(x)=min{2$\sqrt{x}$,|x-2|},其中min{a,b}=$\left\{\begin{array}{l}{aa≤b}\\{ba>b}\end{array}\right.$,若动直线y=m与函数y=f(x)的图象有三个不同的交点,它们的横坐标分别为x1,x2,x3
(1)m的取值范围是$({0,2\sqrt{3}-2})$;
(2)当x1x2x3取最大值时,m=$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在等腰Rt△ABC中,∠BAC=90°,AB=AC=2,D、E分别是边AB、BC的中点,将△BDE沿DE翻折,得到四棱锥B-ADEC,且F为棱BC中点,$BA=\sqrt{2}$.
(Ⅰ)求证:EF⊥平面BAC;
(Ⅱ)在线段AD上是否存在一点Q,使得AF∥平面BEQ?若存在,求二面角Q-BE-A的余弦值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知集合A={x|-1<x<1},B={x|x2-3x≤0},则A∩B等于(  )
A.[-1,0]B.(-1,3]C.[0,1)D.{-1,3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)=$\sqrt{{2^{{x^2}-2ax+a}}-1}$.当a=1时不等式f(x)≥1的解集是(-∞,0]∪[2,+∞);若函数f(x)的定义域为R,则实数a的取值范围是[0,1].

查看答案和解析>>

同步练习册答案