精英家教网 > 高中数学 > 题目详情
6.已知集合A={y|y=|x|+1},B={x|x2≥1},则下列结论正确的是(  )
A.-3∈AB.3∉BC.A∩B=AD.A∪B=A

分析 利用不等式的解法分别化简集合A,B,再利用元素与集合的关系、集合与集合的关系即可得出.

解答 解:由y=|x|+1≥1,可得A=[1,+∞).
由x2≥1,解得x≥1,或x≤-1.∴B=(-∞,-1]∪[1,+∞).
∴-3∉A,3∈B,A∩B=A.
故选:C.

点评 本题考查了不等式的解法、元素与集合的关系、集合与集合的关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.如图,在?ABCD中,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow{b}$,试用$\overrightarrow{a}$,$\overrightarrow{b}$表示向量$\overrightarrow{AO}$,$\overrightarrow{DB}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若函数f(x)=$\sqrt{x-1}$,则函数f(2x)的定义域是(  )
A.RB.[1,+∞)C.[0,+∞)D.(-∞,0]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知在△ABC中,a,b,c为角A,B,C所对的边,且2cos2$\frac{C}{2}$+(cosB-$\sqrt{3}$sinB)cosA=1.
(Ⅰ)求角A的值;
(Ⅱ)求f(x)=4cosxcos(x-A)在x∈[0,$\frac{π}{2}$]的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知{an}是等差数列,首项a1>0,a19+a20>0,a19a20<0,则使an>-a1成立的最大自然数n是(  )
A.20B.37C.38D.40

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$lo{g}_{\frac{1}{2}}$|cos($\frac{π}{3}$-x)|.
(1)求其定义域和值域;
(2)判断其奇偶性;
(3)求其周期;
(4)写出单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知椭圆$C:\frac{x^2}{8}+\frac{y^2}{4}=1$,则其以点P(2,1)为中点的弦的直线方程是x+y-3=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C的中心在原点,焦点在x轴上,离心率等于$\frac{1}{2}$,它的一个短轴端点是(0,2$\sqrt{3}$).
(1)求椭圆C的方程;
(2)P(2,3)、Q(2,-3)是椭圆上两点,A、B是椭圆位于直线PQ两侧的两动点,
①若直线AB的斜率为$\frac{1}{2}$,求四边形APBQ面积的最大值;
②当A、B运动时,满足∠APQ=∠BPQ,试问直线AB的斜率是否为定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设AB是椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的长轴,若把AB给100等分,过每个分点作AB的垂线,交椭圆的上半部分于P1、P2、…、P99,F1为椭圆的左焦点,则|F1A|+|F1P1|+|F1P2|+…+|F1P99|+|F1B|的值是101a.

查看答案和解析>>

同步练习册答案