分析 (1)求出函数的导数,问题转化为b≤$\frac{1}{x}$+2x对x∈(0,+∞)恒成立,根据不等式的性质求出b的范围即可;
(2)求出g(x)的解析式,求出函数的导数,得到函数的单调区间,从而求出函数的最大值即可.
解答 解:(1)∵f(x)在(0,+∞)上递增,
∴f′(x)=$\frac{1}{x}$+2x-b≥0,对x∈(0,+∞)恒成立,
即b≤$\frac{1}{x}$+2x对x∈(0,+∞)恒成立,
∴只需b≤($\frac{1}{x}$+2x)min,
∵x>0,∴$\frac{1}{x}$+2x≥2$\sqrt{2}$,当且仅当x=$\frac{\sqrt{2}}{2}$时取“=”,
∴b≤2$\sqrt{2}$,
∴b的取值范围为(-∞,2$\sqrt{2}$].
(2)当b=-1时,g(x)=f(x)-2x2=lnx-x2+x,其定义域是(0,+∞),
∴g′(x)=$\frac{1}{x}$-2x+1=-$\frac{(2x+1)(x-1)}{x}$,
令g′(x)=0,解得:x=1,
当0<x<1时,g′(x)>0;当x>1时,g′(x)<0,
∴函数g(x)在区间(0,1)上单调递增,在区间(1,+∞)上单调递减,
∴x=1是g(x)的唯一极大值点,则g(x)有最大值为0.
点评 本题考查了函数的单调性、最值问题,考查导数的应用以及转化思想,是一道中档题.
科目:高中数学 来源: 题型:选择题
| A. | 函数f(x)的周期为$\frac{π}{2}$ | |
| B. | 函数f(x)的值域为R | |
| C. | 点($\frac{π}{3}$,0)是函数f(x)的图象的一个对称中心 | |
| D. | f($\frac{π}{5}$)<f($\frac{2π}{5}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(2)<f(4)ln2,2f(e)>f(e2) | B. | f(2)<f(4)ln2,2f(e)<f(e2) | ||
| C. | f(2)>f(4)ln2,2f(e)<f(e2) | D. | f(2)>f(4)ln2,2f(e)>f(e2) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (2,12) | B. | (-2,12) | C. | 14 | D. | 10 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com