精英家教网 > 高中数学 > 题目详情
10.点P在双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右支上,其左、右焦点分别为F1,F2,直线PF1与以坐标原点O为圆心、a为半径的圆相切于点A,线段PF1的垂直平分线恰好过点F2,则该双曲线的渐近线的斜率为±$\frac{4}{3}$.

分析 运用线段的垂直平分线的性质定理可得|PF2|=|F1F2|=2c,设PF1的中点为M,由中位线定理可得|MF2|=2a,再由勾股定理和双曲线的定义可得4b-2c=2a,结合a,b,c的关系,可得a,b的关系,即可得到双曲线的渐近线的斜率.

解答 解:由线段PF1的垂直平分线恰好过点F2
可得|PF2|=|F1F2|=2c,
由直线PF1与以坐标原点O为圆心、a为半径的圆相切于点A,
可得|OA|=a,
设PF1的中点为M,由中位线定理可得|MF2|=2a,
在直角三角形PMF2中,可得|PM|=$\sqrt{4{c}^{2}-4{a}^{2}}$=2b,
即有|PF1|=4b,
由双曲线的定义可得|PF1|-|PF2|=2a,
即4b-2c=2a,即2b=a+c,
即有4b2=(a+c)2
即4(c2-a2)=(a+c)2
可得a=$\frac{3}{5}$c,b=$\frac{4}{5}$c,
即有双曲线的渐近线方程y=±$\frac{b}{a}$x,
该双曲线的渐近线的斜率为±$\frac{4}{3}$.
故答案为:±$\frac{4}{3}$.

点评 本题考查双曲线的定义、方程和性质,主要是渐近线方程,考查平面几何中垂直平分线定理和中位线定理的运用,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.己知α为第二象限角,cosa=-$\frac{3}{5}$,则sin2α=(  )
A.-$\frac{24}{25}$B.-$\frac{12}{25}$C.$\frac{12}{25}$D.$\frac{24}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数f(x)=x(x-c)2在x=1处有极小值,则实数c为(  )
A.3B.1C.1或3D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在测试中,客观题难度的计算公式为${P_i}=\frac{R_i}{N}$,其中Pi为第i题的难度,Ri为答对该题的人数,N为参加测试的总人数.现对某校高三年级240名学生进行一次测试,共5道客观题.测试前根据对学生的了解,预估了每道题的难度,如表所示:
题号12345
考前预估难度Pi0.90.80.70.60.4
测试后,随机抽取了20名学生的答题数据进行统计,结果如下:
题号12345
实测答对人数161614144
(Ⅰ)根据题中数据,估计这240名学生中第5题的实测答对人数;
(Ⅱ)从抽样的20名学生中随机抽取2名学生,记这2名学生中第5题答对的人数为X,求X的分布列和数学期望;
(Ⅲ)试题的预估难度和实测难度之间会有偏差.设${P_i}^′$为第i题的实测难度,请用Pi和${P_i}^′$设计一个统计量,并制定一个标准来判断本次测试对难度的预估是否合理.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.写出分别满足下列条件的双曲线的标准方程.
(1)曲线上的点P到点F1(4,0)的距离与它到点F2(4,0)的距离的差的绝对值等于6.
(2)曲线上的点P到点F1(-10,0)的距离与它到点F2(10,0)的距离的差等于16.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在△ABC中,关于x的方程(1+x2)sinA+2xsinB+(1-x2)sinC=0无实数根,则△ABC的形状为(  )
A.锐角三角形B.钝角三角形C.直角三角形D.等边三角形

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{a}$2=4,|$\overrightarrow{b}$|=2,($\overrightarrow{a}$+$\overrightarrow{b}$)(3$\overrightarrow{a}$-$\overrightarrow{b}$)=4,则$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆C1:$\frac{{x}^{2}}{6}$+$\frac{{y}^{2}}{4}$=1,圆C2:x2+y2=t经过椭圆C1的焦点.
(1)设P为椭圆上任意一点,过点P作圆C2的切线,切点为Q,求△POQ面积的取值范围,其中O为坐标原点;
(2)过点M(-1,0)的直线l与曲线C1,C2自上而下依次交于点A,B,C,D,若|AB|=|CD|,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图所示,在四棱锥P-ABCD中,底要ABCD为平行四边形,∠DBA=30°,$\sqrt{3}$AB=2BD,PD=AD,PD⊥底面ABCD,E为PC上一点,且PE=$\frac{1}{2}$EC.
(1)证明:PA⊥BD;
(2)求二面角C-BE-D余弦值.

查看答案和解析>>

同步练习册答案