精英家教网 > 高中数学 > 题目详情
3.己知α为第二象限角,cosa=-$\frac{3}{5}$,则sin2α=(  )
A.-$\frac{24}{25}$B.-$\frac{12}{25}$C.$\frac{12}{25}$D.$\frac{24}{25}$

分析 由已知利用同角三角函数基本关系式可求sinα,进而利用二倍角的正弦函数公式即可计算得解.

解答 解:∵α为第二象限角,cosα=-$\frac{3}{5}$,
∴sinα=$\sqrt{1-co{s}^{2}α}$=$\frac{4}{5}$,
∴sin2α=2sinαcosα=2×(-$\frac{3}{5}$)×$\frac{4}{5}$=-$\frac{24}{25}$.
故选:A.

点评 本题主要考查了同角三角函数基本关系式,二倍角的正弦函数公式在三角函数化简求值中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.执行如图所示的程序框图,则输出的k=(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知等差数列{an}的前n项和为Sn,且a2=1,S5=15,数列{bn}的前n项和Tn满足Tn=(n+5)an
(1)求an
(2)求数列{$\frac{1}{{a}_{n}{b}_{n}}$}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若复数z=(1+i)•i2(i表示虚数单位),则$\overline{z}$=-1+i.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=xlnx-ex+1
(Ⅰ)求函数f(x)在点(1,f(1))处的切线方程;
(Ⅱ)证明:f(x)<sinx在(0,+∞)上恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.我们常用函数y=f(x)的函数值的改变量与自变量的改变量的比值来表示平均变化率,当自变量x由x0改变到x+x0时,函数值的改变量△y等于(  )
A.f(x0+△x)B.f(x0)+△xC.f(x0)•△xD.f(x0+△x)-f(x0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.轮船A和轮船B在上午8时同时离开海港C,两船航行方向之间的夹角为120°,轮船A与轮船B的航行速度分别为25海里/小时和15海里/小时,则上午12时两船之间的距离是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.算筹是中国古代用于计算和运算的若干小棒,汉代(约)算筹数值如下表:

用算筹表示数时,从右至左依次先纵后横交错排列,若出现斜棒,则表示负数,如“”表示36,“
”表示-723,函数f(x)=3xlnx-x3+83的极大值是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.点P在双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右支上,其左、右焦点分别为F1,F2,直线PF1与以坐标原点O为圆心、a为半径的圆相切于点A,线段PF1的垂直平分线恰好过点F2,则该双曲线的渐近线的斜率为±$\frac{4}{3}$.

查看答案和解析>>

同步练习册答案