精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)=xlnx-ex+1
(Ⅰ)求函数f(x)在点(1,f(1))处的切线方程;
(Ⅱ)证明:f(x)<sinx在(0,+∞)上恒成立.

分析 (Ⅰ)求出原函数的导函数,可得f(1)与f′(1)的值,代入直线方程的点斜式可得切线方程;
(Ⅱ)要证f(x)<sinx在(0,+∞)上恒成立,即xlnx-ex+1-sinx<0在(0,+∞)恒成立,也就是证xlnx<ex+sinx-1在(0,+∞)上恒成立,然后分0<x≤1与x>1证明,当0<x≤1时成立,当x>1时,令g(x)=ex+sinx-1-xlnx,然后两次求导即可证明f(x)<sinx在(0,+∞)上恒成立.

解答 (Ⅰ)解:f′(x)=lnx+1-ex
f(1)=1-e,f′(1)=1-e,
故切线方程是:y-1+e=(1-e)(x-1),
即(1-e)x-y=0;
(Ⅱ)证明:要证f(x)<sinx在(0,+∞)上恒成立,
即xlnx-ex+1-sinx<0在(0,+∞)恒成立,也就是证xlnx<ex+sinx-1在(0,+∞)上恒成立,
当0<x≤1时,ex+sinx-1>0,xlnx≤0,
故xlnx<ex+sinx-1,也就是f(x)<sinx;
当x>1时,令g(x)=ex+sinx-1-xlnx,
g′(x)=ex+cosx-lnx-1,
令h(x)=g′(x)=ex+cosx-lnx-1,
h′(x)=${e}^{x}-\frac{1}{x}-sinx$>0,故h(x)在(1,+∞)上单调递增,
∴h(x)>h(1)=e+cos1-1>0,即g′(x)>0,则g(x)>g(1)=e+sin1-1>0,
即xlnx<ex+sinx-1,即f(x)<sinx,
综上所述,f(x)<sinx在(0,+∞)上恒成立.

点评 本题考查利用导数求函数在闭区间上的最值,考查利用导数研究过曲线上某点处的切线方程,利用两次求导判断函数的单调性是解答该题的关键,是压轴题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.如图,以锐角△ABC的边BC为直径的半圆分别与AC、AB交于点D、E,BD、CE的交点为H,且BC=2.
(Ⅰ)证明:AB•CD=BD•HC;
(Ⅱ)求BE•BA+CD•CA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设F是椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个焦点,P是C上的点,圆x2+y2=$\frac{{a}^{2}}{9}$与线段PF交于A、B两点,若A、B三等分线段PF,则C的离心率为(  )
A.$\frac{\sqrt{3}}{3}$B.$\frac{\sqrt{5}}{3}$C.$\frac{\sqrt{10}}{4}$D.$\frac{\sqrt{17}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.某大厦有一部电梯,若该电梯在底层有5个乘客,且每位乘客在第10层下电梯的概率为$\frac{1}{3}$,用ξ表示5位乘客在第10层下电梯的人数,则随机变量ξ的期望E(ξ)=$\frac{5}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若函数f(x)=log22x-log2x+1(x≥2)的反函数为f-1(x).则f-1(3)=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.己知α为第二象限角,cosa=-$\frac{3}{5}$,则sin2α=(  )
A.-$\frac{24}{25}$B.-$\frac{12}{25}$C.$\frac{12}{25}$D.$\frac{24}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.一拱桥为抛物线,当拱顶离水面2米时,水面宽4米.当水面下降2米后,水面宽为4$\sqrt{6}$米.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在正项等差数列{an}中a1和a4是方程x2-10x+16=0的两个根,若数列{log2an}的前5项和为S5且S5∈[n,n+1],n∈Z,则n=11.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.写出分别满足下列条件的双曲线的标准方程.
(1)曲线上的点P到点F1(4,0)的距离与它到点F2(4,0)的距离的差的绝对值等于6.
(2)曲线上的点P到点F1(-10,0)的距离与它到点F2(10,0)的距离的差等于16.

查看答案和解析>>

同步练习册答案