分析 (I)连接OE,OD,则△OED≌△OAD,证明OD∥BC,利用O为AB的中点,可得点D是AC的中点;
(Ⅱ)连接AE,由射影定理有AE2=CE•BE,求出BE,AE,可得BC,即可求∠ACB大小.
解答
证明:(I)连接OE,OD,则△OED≌△OAD,
∴∠AOD=∠EOD.
∵∠ABC=$\frac{1}{2}$∠AOE,
∴∠AOD=∠ABC,
∴OD∥BC,
∵O为AB的中点,
∴点D是AC的中点;
解:(Ⅱ)连接AE,设CE=1,AE=x.则AB=2OA=$\sqrt{2}$,
∴BE=$\sqrt{2-{x}^{2}}$.
Rt△ABC中,由射影定理有AE2=CE•BE,
∴x2=$\sqrt{2-{x}^{2}}$.
∴x=1,
∴BC=BE+CE=2,
Rt△ABC中,sin∠ACB=$\frac{AB}{BC}$=$\frac{\sqrt{2}}{2}$,
∴∠ACB=45°.
点评 本题考查三角形全等的判定与性质,考查射影定理,考查学生分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 患心肺疾病 | 不患心肺疾病 | 合计 | |
| 男 | 5 | ||
| 女 | 10 | ||
| 合计 | 50 |
| P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com